PHY 381, Homework #3, Due October 22, 2019

9.7 Given the equations
2, —6x, — x,=-38
—3x,— x,+Tx;=-34
—8x; + x,— 2x;=-20
(a) Solve by Gauss elimination with partial pivoting. As part
of the computation, use the diagonal elements to calcu-
late the determinant. Show all steps of the computation.

(b) Substitute your results into the original equations to
check your answers.

10.3 Use naive Gauss elimination to factor the following
system according to the description in Sec. 10.2:

10x, + 2x, — x,= 27
—3x; — 6x, + 2x; = —61.5
X+ x4+ 5x,=-215

Then, multiply the resulting [L] and [U] matrices to deter-
mine that [A] is produced.

10.4 (a) Use LU factorization to solve the system of equa-
tions in Prob. 10.3. Show all the steps in the computation.
(b) Also solve the system for an alternative right-hand-side
vector

by =112 18 —¢|

10.5 Solve the following system of equations using LU
factorization with partial pivoting:
2x, — 6x, — x;=-38
=3x = x+Tx;=-34
—8x, + x,—2x;=-40

11.15 A chemical constituent flows between three reactors
as depicted in Fig. P11.15. Steady-state mass balances can
be written for a substance that reacts with first-order kinet-
ics. For example, the mass balance for reactor 1 is

Q1inCrin — Q120 — Q501 + QE,ICZ —kVie, =0 (PI1.15)

where Q,,, = the volumetric inflow to reactor 1 (m*/min),
¢\, = the inflow concentration to reactor 1 (g/m”), Q;;=the
flow from reactor i to reactor j (m*/min), ¢; = the concentra-
tion of reactor i (g/m?), k = a first-order decay rate (/min),
and V, = the volume of reactor (m?).

(a) Write the mass balances for reactors 2 and 3.



(b) If £ = 0.1/min, write the mass balances for all three
reactors as a system of linear algebraic equations.

(c) Compute the LU decomposition for this system.

(d) Use the LU decomposition to compute the matrix inverse.

(e) Use the matrix inverse to answer the following questions:
(i) What are the steady-state concentrations for the three
reactors? (i) If the inflow concentration to the second re-
actor is set to zero, what is the resulting reduction in con-
centration of reactor 1? (iif) If the inflow concentration
to reactor 1 is doubled, and the inflow concentration to
reactor 2 is halved, what is the concentration of reactor 3?
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FIGURE P11.15

12.3 Use the Gauss-Seidel method to solve the following
system until the percent relative error falls below e, = 5%:

10x; + 2%, — x;= 27
=3x, — 6x, + 2x, = —61.5
x, + x4+ 5x;=-21.5



13.5 Consider the mass-spring system in Fig. P13.5. The fre-
quencies for the mass vibrations can be determined by solving
for the eigenvalues and by applying M ¥ + kx = 0, which
yields

m 0 0] (% 2k —k —k x| 0
0 my 0|Jd%4+< -k 2k —k nLt=40
0 0 my| |F -k —k 2% X3 0

Applying the guess x = x,e™ as a solution, we get the fol-
lowing matrix:

2k — m,w2 —k —k Xo . 0
—k 2k — myw” —k Yo V=20
—k —k 2k — m3w2 *03 0

)—P-xl )—b—xz ’—b%
kol ky | ks ky

my ) My my ¢
J JC
FIGURE P13.4

Use MATLAB’s eig command to solve for the eigenvalues
of the k — mw® matrix above. Then use these eigenvalues to
solve for the frequencies (w). Let m; = m, = m; = 1 kg. and
k=2 N/m.

FIGURE P13.6




13.6 As displayed in Fig. P13.6, an LC circuit can be mod-
eled by the following system of differential equations:

%, 1 .
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where [. = inductance (H), r = time (s), { = current (A), and
C = capacitance (F). Assuming that a solution is of the form
r‘}. = j} sin (wt), determine the eigenvalues and eigenvectors for
this system with L = 1 H and C = 0.25C. Draw the network,
illustrating how the currents oscillate in their primary modes.






