PHY 381C, Homework #6, Due December 2, 2019

23.23 As depicted in Fig. P23.23, a double pendulum .
consists of a pendulum attached to another pendulum. We
indicate the upper and lower pendulums by subscripts 1 and
2, respectively, and we place the origin at the pivot point of
the upper pendulum with y increasing upward. We further
assume that the system oscillates in a vertical plane subject
to gravity, that the pendulum rods are massless and rigid,
and the pendulum masses are considered to be point masses.
Under these assumptions, force balances can be used to de-
rive the following equations of motion

FIGURE P23.23
A double pendulum.

d*0,  — g(2m + my)sin 8, — m, g sin(@, — 26,) — 2 sin (6, — 6,)m, (db/di)* L, + (d8,/di)* L, cos(8, — 6,))

dr’ L,(2m, + my — m, cos (26, — 8,)
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where the subscripts 1 and 2 designate the top and bot-
tom pendulum. respectively, # = angle (radians) with
0 = vertical downward and counter-clockwise positive,
t = time (s), g = gravitational acceleration (= 9.81 m/s?),
m = mass (kg), and L = length (m). Note that the x and y
coordinates of the masses are functions of the angles
as in

x; =L, sin#, vy, =—L, cos@,

X, =x, + L,siné, ¥, =y, — L, cos#,

(a) Use oded5 to solve for the angles and angular velocities
of the masses as a function of time from ¢t = 0 to 40 s.
Employ subplot to create a stacked plot with a time se-
ries of the angles in the top panel and a state space plot
of &, versus ¢, in the bottom panel. (b) Create an ani-
mated plot depicting the motion of the pendulum. Test
your code for the following:

Case 1 (small displacement): Ly =L, =1m, my=m, =
0.25 kg, with initial conditions: ¢, = 0.5 m and &, =
do,/dt = do,/dr = 0.
Case 2 (large displacement): Ly =L, =1m,m; = 0.5 kg,
m, = 0.25 kg, with initial conditions: ¢, = 1 m and &, =
de,/dt = do,/dr = 0.

You do not have to use ode45, if you have a good solver of your own!



24.1 A steady-state heat balance for a rod can be repre-
sented as

T

5

—0.15T=0

Obtain a solution for a 10-m rod with T(0) = 240 and
T(10) = 150 (a) analytically. (b) with the shooting method,
and (c) using the finite-difference approach with Ax = 1.

24.14 A biofilm with a thickness Lf(cm), grows on the sur-
face of a solid (Fig. P24.14). After traversing a diffusion
layer of thickness L (cm), a chemical compound A diffuses
into the biofilm where it is subject to an irreversible first-
order reaction that converts it to a product B.

Steady-state mass balances can be used to derive the

following ordinary differential equations for compound A:

D—E=0 O<x<L
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where D = the diffusion coefficient in the diffusion layer =
0.8 cm/d, D, = the diffusion coefficient in the biofilm =
0.64 cm”d, and k = the first-order rate for the conversion
of A to B =0.1/d. The following boundary conditions hold:

c,=Cy atx =0

@) atx=L+L;

where c¢,; = the concentration of A in the bulk liquid =
100 mol/L. Use the finite-difference method to compute the
steady-state distribution of A fromx = 0 to L + L, where
L =0.008 cm and L, = 0.004 cm. Employ centered finite
differences with Ax= 0.001 cm.

24.8 An insulated heated rod with a uniform heat source can
be modeled with the Poisson equation:

L= —re

Given a heat source f(x) = 25 °C/m’® and the boundary con-
ditions T(x = 0) =40 °C and T'(x = 10) = 200 °C, solve for
the temperature distribution with (a) the shooting method and
(b) the finite-difference method (Ax = 2).
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FIGURE P24.14
A bicfilm growing on a sclid surface.




24.20 Just as Fourier’s law and the heat balance can be
employed to characterize temperature distribution, analo-
gous relationships are available to model field problems
in other areas of engineering. For example, electrical engi-
neers use a similar approach when modeling electrostatic
fields. Under a number of simplifying assumptions, an ana-
log of Fourier’s law can be represented in one-dimensional
form as

dv
D=_g4%
“x
where D is called the electric flux density vector, £ = permit-
tivity of the material, and V = electrostatic potential. Simi-
larly, a Poisson equation (see Prob. 24.8) for electrostatic
fields can be represented in one dimension as

dV_ P
dv? -7 E

where p, = charge density. Use the finite-difference tech-
nique with Ax = 2 to determine V for a wire where V(0) =
1000, V(20) =0, e =2, L = 20, and p, = 30.



