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Lectures on the theory of the charge transfer in molecular and nano-scale systems
Lecture 4. Ingredients, Born Oppenheimer.

Let’s talk about inter-atomic forces and how they hold everything together. Consider a
simple ionic crystal NaCl (it is table salt, as you know), for example. We are told by
chemists that it consists of positive Na” and negative Cl” ions arranged on a crystal lattice
as Na-Cl-Na-Cl-...etc., or as a crystallographer among you would astutely notice on two

interpenetrating face centered cubic (fec) lattices shified by a vector (%,%,% ) with
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together. The vector ﬁu goes from the i-th Na ion to the j-th Cl ion, and scales with the

respect to each other. The attractive Coulomb potential —e? holds the system

lattice constant (|l_?,,| ~a). We can sum over all distinct Na/Cl pairs and calculate the

energy of the crystal:

E=—ezz%.
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But wait, something is wrong in this picture! If we make the lattice constant smaller the

. = dE . .
energy gets more negative, so there will be a force F=——— trying to shrink the
1]

crystal!!! Max Born has noticed this in the early 30°s (M. Born and J.E. Mayer, Z. Physik
73, 1 (1932)), and suggested adding an ad-hoc short ranged repulsive force to prevent the
collapse of the crystal. Born potential has the following form:
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If you sum over all ions you will get the total energy of the crystal. It is hard to do, but
surprisingly, if you assume the crystal is infinite, there is a solution! A decade before the
Born-Mayer paper P. P. Ewald had suggested a very elegant way of calculating such
infinite sums (P.P. Ewald, Ann. Physic. 64, 253 (1921)), and the final answer looks like
this:
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A is called the Madelung constant after a German physicist E. Madelung who introduced
it in 1918 (E. Madelung, Physic C. 19, 254 (1918)). This was the year of Spanish
Influenza pandemic and the end of the First World War (both killed more people in a year



than four years of plague in the 14" century, which wiped out one third of the population
of Europe!).

The question still remains however, where this intriguing repulsion is coming from?
Classically, it is usually attributed to the repulsion between the nuclei as two atoms are
brought really close to each other. This doesn’t really fit well with our chemical picture

of a positively charged Na and negativel o
we use Quantum Mechanicg Let’s take a look at the hydrogen molecule. This is the

simplest molecular system: we have two protons and two electrons.

The quantization recipe is simple. Let’s write the classical energy function for these four

interacting particles, and then assuming that for each particle its position and momentum

are operators forming a pair of conjugated variables obeying the usual commutation

relations. The Schrodinger equation then can easily be written. The classical total energy Q\

is given by: //”"\-‘ Q/’L
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Here T is the kinetic energy and U is the potential energy, for example:
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We use lower case variables for electrons and upper case variables for protons. The i

commutation relations arewjlziﬁﬁ,j and IR,,P, r= iho, (here i, j=x,y,z). Here the 1.7 > (o l.f-a,

hats symbolize that these are operators, we shall drop this notation for simplicity. The e

variables describing different particles commute, and the Schrédinger equation is: -3 4 4.5
R R N R oo o B = ‘.Oq *ie

(7 + T,+0.,+0, + U‘_,,)y‘ (F.F R, R,) = E,Y,(F Py R, R,) —

We have neglected the spin, but even so the equation for the wave function of a
combined system of electrons and protons looks very complicated!!! It turns out that we
can greatly simplify the task if we note that electrons are much lighter than protons, 1836
times lighter as a matter of fact (this is the year of the Alamo!!!). The original idea
¥belongs to Max Born and Robert Oppenheimer (Max Born was born in Breslau, Germany |
in1882, Robert Oppenheimer was born in New York in 1904) and was published in 1927 .&— ‘RQ-CQVM& .
(M. Born and R. Oppenheimer, Ann. Phys. 84, 458 (1927)). Note that Oppenheimer was
2
only 23 years old when the pa;ﬁ;:fr’negtm < rj
There are four simple steps in the Born-Oppenheimer solution. Because the masses are so
different, the electrons move very fast against the background of almost stationary
protons. On the other hand from the slow protons point of view, they can’t follow
electrons zipping around and so are immersed in the “electronic fog” feeling only the
potential averaged over many electronic orbits. (1) This suggests that we can try first to

solve the electronic problem for some fixed configuration of protons R :
2 elecfyrom pr .

H,0,G5 P R) = E (R)p, (7., 7,:R) & 4””‘4"&%)&'{)
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It is customary to include the proton-proton repulsion (it is simply ) into the

electronic Hamiltonian, so A, is given by:

Hy=T 4l +U vl . -

A
Note that this is actually a two-electron problem, which in-a—mese—complicated case

would he a many-body electronic problem! We will discuss possible solutions of this
later, for now, let’s assume we have solved it! /n other words we have a complete set of
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two-electron wave functions {g(r,,r2 : R)}; which can be used as a basis' The basis does ( Comment [TCM2]: Inserted a ) i

depend on the proton configuration through the set R = (i—?} ; f(’z) parametrically.

(2) Since we have a complete set, let’s use it to expand the total wave function of the
system:
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Of course, the complete set we are using is changing all the time as the protons move. So
you may say we have not gained much, but wait! Remember in your electrostatics class
you did the separation of variables F(x,y,z)=f(x)g(y)k(z)? This is also a separation of
variables, but a subtle one. We separate fast variables describing the electrons from the
slow ones describing the ions.

—_——

(3) We plug this expansion of the total wave function back into our Schrodinger equation
for the total system, multiply by some ¢, (7,7,;R)and integrate over the electronic

coordinates: F

[ [drar, x|:go*j (r-,,a;ﬁ)[ﬁ, +7,+0, +0,, +U,,,,]ZL(E)Q(F,,F:;E)]:
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It is said that we are integrating out the fast variables. The right hand side of this
expression is trivially evaltated:
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The left hand side gives us a bit of a headache, but it is only algebra! First let’s take care
of everything but the kinetic energy of the protons. Note that the differential operators in

the electron kinetic energy gladly ignore the proton coordinates:

drdr, x| o* (7.7 R)Y. (RN +U,. +U,, +U, I, (.7 R) | =
Z Pr
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=3 7, (R)E,(R)x ”dr-,dr-:qo*, (7R R, (7.7 R) =Y 7, (R)ES, = x,(R)E,(R)

Now let’s take a look at the difficult terms:
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Remember, that E:(E,,kz)and T only acts on the proton coordinates. Let me s Lam ¥
1
confuse you some more, and introduce a special operator people use to compute vector
derivatives. It is called a gradient and is denoted as either gradorV, it means the
: 20 28 .0 PP I ,
following:V =1 a+]—a; + ka—. We need to take a second derivative or a gradient of a

gradient of the product of two wave functions: a
s
oL ho
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ViV, (R RO, o7 R R + 29 2, (R ROV 10, (P R R, D)+
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1
v\..;)o Now this looks like a total mess, however the first term is easily recognizable! After the
v)})({ integration over electron coordinates it is simply the kinetic energy of the first proton:
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The other two terms are not so easily understood, and we will just write them neatly and
then appreciate their complexity and beauty:
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Keeping in mind that there is a similar involving t cond proton, we are now in

position to reassemble the Schrédinger equation, after the fast variables were integrated
out:
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The left hand side looks like a regular Schrodinger equation for what effectively looks
like the proton wave functionz,“.(ﬁ,, Rz}, but the right hand side says that it is not! The

sum on the right hand side goes over both protons « =1,2 and all the electronic states is

This requires some analysis. ' '
! T Nave RO = Oy onn et b ?C L

(4) Just to give you heads up we shall neglect the right hand side! But what are the
reasons for this you might ask? Let’s take a look:
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Note that the matrix elements are taken between the electronic wave functions, but the @

operators themselves act on the proton coordinates. The first term can be thought of as an

overlap between the electron wave function and the same function acted upon by a T “B’WJ{H Qo Areovnd ..

displacement operator, and if the electron wave function is localized this overlap with the

shifted function will be small. As for the second term, assuming that % has the same C? 2 - 12
-

. d, v 2 m s .
order of magnitude as — it looks like p~ = E,2m, thus the term scales as — which is
ar

n,

1836, remember the Alamo! In other words, the mass difference and the localization of
the electronic states suggest we can neglect the C,, | in the right hand side. This is called

the adiabatic approximation and C, , is known as non-adiabaticity operator{ a2s= V¢ byem i< Coup

(5) We now have an effective Schrodinger like equation for the coefficients which play

the role of the proton wave functions: \’{ e_} m
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Note that this is a two-particle equation since R = (R, :R,) and the role of the potential
energy is played by the total energy of electrons. Obviously you will have a different

potential energy surface for different total energies of the electronic system! 2(
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This is not a good strategy for Hydrogen, but let’s for a second pretend that the protons
can be described classically. Then we have a potential for each energy state of the

electronic system. For example for the ground state:
0 I

V2 = Ey(R,R,)

Now we can compute forces acting on both protons:

_OE,(R,R,)
aR

F- = _an(k‘l’ kz)
? R,

1)

F =

Note that in principle these do not have to be pair wise forces, they are true quantum
many-body forces acting on each proton. This is a quantum derivation of the inter-atomic
potential! If we have the appropriate initial conditions we now can do molecular

dynamics using Newton’s law:
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