
Homework 1 Solutions

Problem 1

Recall in the Born-Oppenheimer approximation for the two-proton, two-electron system that
we expanded the total wave function in terms of the electronic wave functions φi. (See the
notes on the class web page if you don’t remember.) We then plugged this expansion into
the Schrödinger wave equation for the whole system, multiplied by another electronic wave
function, and integrated over the electronic coordinates. This left us with (using the notation
from the class notes)∫∫

dr

[
φ∗j (r;R) (Tp + Te + Uee + Uep + Upp)

∑
i

χs,i(R)φi(r;R)

]
=

Es

∫∫
drφ∗j (r;R)

∑
i

χs,i(R)φi(r;R). (1)

Note that while we are following the class notation, which was done for a hydrogen molecule,
this easily generalized to the case of N protons because the proton configuration is frozen
and described in R. In the same way, we write the electronic coordinates as a set r = {ri}.
i and j index the electronic wave functions over which the inner product is being done.
Moving on, because of the orthogonality of the electron wave functions, the right-hand side
of this expression reduces to Esχj(R). Furthermore, we defined the φi as eigenfunctions of
Te + Uee + Uep + Upp with eigenvalues Ei(R). Therefore, our expression reduces to∫∫

dr

[
φ∗j (r;R)Tp

∑
i

χs,i(R)φi(r;R)

]
+ χs,j(R)Ej(R) = Esχs,j(R). (2)

The proton kinetic energy operator is all that remains. Recall that the kinetic energy operator
(in general) is given by

Tp = − h̄2

2mp
∇2 = − h̄2

2mp
∇ · ∇. (3)

(For this system, since we have two protons, we will have two such terms.) Consider the
action of one of the kinetic energy operators on our expanded wave function. Dropping the
coordinates for clarity, we have

∇α · ∇α (χs,iφi) = ∇α · [(∇αχs,i)φi + χs,i∇αφi]
=
(
∇2
αχs,i

)
φi + 2 (∇αχs,i) (∇αφi) + χs,i∇2

αφi, (4)

where α is an index labeling the proton coordinates with which the derivatives are to be
taken with respect to. As discussed in the notes, the first term is the kinetic energy of the
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protons, and the second two terms, once we simplify and rearrange them, will constitute the
non-adiabiticity operator. Plugging these two terms back into the integral, we have

− h̄2

2mp

∫∫
dr

φ∗j (r;R)
∑
i,α

[
2 (∇αχs,i(R)) (∇αφi(r;R)) + χs,i(R)∇2

αφi(r;R)
]

= − h̄2

2mp

∫∫
dr

φ∗j (r;R)
∑
i,α

[
(∇αφi(r;R))∇α +∇2

αφi(r;R)
]
χs,i(R)


= − h̄2

2mp

∫∫
dr

∑
i,α

[
φ∗j (r;R) (∇αφi(r;R))∇α + φ∗j (r;R)∇2

αφi(r;R)
]
χs,i(R)


= − h̄2

2mp

∑
i,α

[
〈φj | ∇α |φi〉∇α +

〈
φj
∣∣∇2

α

∣∣φi〉 ]χs,i(R)

=
∑
α

Cα,jχs,i(R), (5)

where we have found the non-adiabaticity operator Cα,j to be

Cα,j = − h̄2

2mp

∑
i

[
〈φj | ∇α |φi〉∇α +

〈
φj
∣∣∇2

α

∣∣φi〉 ] (6)

In the naive Born-Oppenheimer approximation, we only consider the electronic ground states.
For i = 0 and j = 0 then, the non-adiabaticity operator becomes

Cα,0 = − h̄2

2mp
〈φ0 | ∇α |φ0〉∇α +

〈
φ0
∣∣∇2

α

∣∣φ0〉 . (7)

To simplify the first term, first recall that the electronic wave functions are normalized, and
then consider the gradient of the normalization condition:

∇α (〈φ0 |φ0〉) = ∇α(1) = 0

= (∇α 〈φ0|) |φ0〉+ 〈φ0| (∇α |φ0〉)
= 2 (〈φ0| ∇α) |φ0〉 , (8)

where we have made use of the Hermiticity of the operator. Thus, the first term vanishes,
and in the naive Born-Oppenheimer the non-adiabaticity operator becomes

Cα,0 = − h̄2

2mp

〈
φ0
∣∣∇2

α

∣∣φ0〉 (9)

This term is related to the response of the electronic states to a change in the nuclear config-
uration.
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Figure 1: Basis states for the hydrogen molecule with 1s orbitals and spin in (a) the atomic and
(b) molecular orbital bases.

Problem 2

(a) Diagrams of the atomic and molecular basis states for hydrogen with 1s orbitals and
spin are shown in Figure 1. Two electrons can occupy four orbitals in six ways.

(b) In the molecular basis, the highest energy state is when both electrons are in the anti-
bonding state. We will write this wave function in terms of the one-electron wave func-
tions χ1 = ψBα, χ2 = ψBβ, χ3 = ψABα, and χ4 = ψABβ, where ψB and ψAB are
the bonding and anti-bonding states and α and β are the spin orbitals. The electrons
must have opposite spins to satisfy the Pauli exclusion principle, and because they are
fermions, the wave function must be antisymmetric. Therefore, we can write the total
wave function in the molecular picture using a Slater determinant composed of χ3 and
χ4:

Ψmol(r1, ω1; r2, ω2) =
1√
2

∣∣∣∣ψAB(r1)α(ω1) ψAB(r1)β(ω1)
ψAB(r2)α(ω2) ψAB(r2)β(ω2)

∣∣∣∣ , (10)

where the factor of 1/
√

2 has been included for normalization. Expanding the determi-
nant and simplifying, we have

Ψmol(r1, ω1; r2, ω2) =
1√
2
ψAB(r1)ψAB(r2) [α(ω1)β(ω2)− α(ω2)β(ω1)] (11)

In the atomic representation, all the states have equal energy. This would not be true if
we allowed for electron interactions.

Problem 3

To solve this problem, we will follow the class notes on the Born-Oppenheimer approximation
and on the harmonic approximation. Before we proceed, let us outline the procedure we will
follow:
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(i) Separate the wave function of the protons and the electrons.

(ii) Expand the total wave function in the basis of electronic states.

(iii) Use this to write Schrödinger’s equation for the proton wave function.

(iv) Assume the potential for the protons is harmonic, and solve for the wave functions.

(v) Approximate the electronic wave function as an antisymmetric combination of single-
electron wave functions.

The first three steps above are from the Born-Oppenheimer approximation. The Hamiltonian
for this system is

H = Tp +Hel

= Tp + Te + Upp + Uee + Uep. (12)

Let us denote the eigenstates of this Hamiltonian as Ψs(r1, r2;R1,R2), where the lowercase
ri denote the positions of the electrons and the Ri denote the positions of the nuclei. Treating
the protons as stationary compared to the electrons, we first solve the electronic problem:

Helϕi(r1, r2;R) = Ei(R)ϕi(r1, r2;R), (13)

where R = (R1,R2). The ϕi(r1, r2;R) form a complete set, so we can expand Ψs in terms
of them:

Ψs(r1, r2;R1,R2) =
∑
i

χi(R)ϕi(r1, r2;R). (14)

Plugging this into the Schrödinger equation for the whole system, we eventually arrive at a
Schrödinger-like equation for the χi(R) (see the notes for details):

(Tp + Ei(R))χi(R) = Es,iχi(R), (15)

where Es is the total system energy. We now change coordinates from {R1,R2} to {Rcm, r},
where r ≡ |R1 −R2|. The kinetic energy operator has a term for the center of mass and a term
for the separation of the protons. The center of mass term has no potential and no rotation,
and therefore contributes energy h̄2k2/2m to the total energy, which we’ll set to zero. Its wave
function will be a plane wave, χcm

s = eik·Rcm/
√
V . Now, we are interested in the rotational

and the vibrational degrees of freedom. To solve this, we will separate the rotational and
vibrational degrees of freedom, which we can do because the vibrational excitations are much
higher energy than the rotational (the frequencies are of the order 10–1000 cm−1 and 1 cm−1,
respectively). In effect, this approximation treats the molecule as a rigid rotor, which means
the atoms for the rotational problem as though they were fixed on the surface of a sphere
of diameter r ≡ |R1 −R2|, which uncouples the vibrations and rotations and simplifies the
problem considerably. The rigid rotor is described by two angles θ and φ. Then we consider
small deviations of the separation from the equilibrium distance, which is simply a harmonic
oscillator. Our equations for the vibrational and rotational degrees of freedom are therefore
given by (

− h̄
2

2µ

∂2

∂r2
+

1

2
kr2
)
χr
i = Ers,iχ

r
i (16)

L2

2I
χθφi = − h̄2

2µr2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
χθφi = Els,iχ

θφ
i , (17)
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where µ = mp/2 is the reduced mass. The rotational equation can further be separated into
equations dependent only on θ and φ. The end result of this is (see any elementary quantum

or electrodynamics text for the details) that χθφi = Ylm(θ, φ) and Els = l(l + 1)/2µr2. The
vibrational equation is simply that of a harmonic oscillator (because we made it that way).
Its energies are Ers = h̄ω(i+ 1/2), and its solution is

χri =
1√
2ii!

(µω
πh̄

)1/4
exp

(
−µω

2h̄
r2
)
Hi

(√
µω

h̄
r

)
, (18)

where the Hi are Hermite polynomials. Next, we will need the electronic wave functions.
There is no exact solution, so let us simply write a generic antisymmetric wave function from
the one-electron wave functions:

ϕ(r1, r2) =
1√
2

(ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2)) (19)

Our overall wave function then takes the form

χilms = χcm
i χriYlm(θ, φ)ϕ(r1, r2). (20)

Finally, for our ground state solution, we set i = l = m = 0, and we have

χ000
s =

√
1

4π
× 1√

V
eik·Rcm ×

(µω
πh̄

)1/4
exp

(
−µω

2h̄
r2
)

× 1√
2

(ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2))

What about the first excited state? The difference in energy between states of a harmonic
oscillator are h̄ω = h̄

√
k/m. Unless the spring constant in our harmonic approximation is very

large, this energy difference will be smaller than the energy differences in the electronic states.
Furthermore, as discussed above, the rotational excitations are smaller than the vibrational
excitations. Therefore, our first excited state will be Ψs(ex.) = χ0Y1mϕ:

χ01m
s =

√
3

4π
cos θeimφ × 1√

V
eik·Rcm ×

(µω
πh̄

)1/4
exp

(
−µω

2h̄
r2
)

× 1√
2

(ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2))

Note that this state is triply degenerate because m = {−1, 0, 1}. The first excited vibrational
state is simply Ψs(ex.) = χ1Y00ϕ:

χ100
s =

√
1

4π
× 1√

V
eik·Rcm ×

√
1

2

(µω
πh̄

)1/4
exp

(
−µω

2h̄
r2
)

2

√
µω

h̄
r

× 1√
2

(ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2))

5



Problem 4

(a) Since we are working in a linear combination of atomic orbitals (LCAO) basis, our basis
wave functions will be |1〉 and |2〉, which will be the 1s orbitals centered on atoms 1 and
2 respectively. Our Hamiltonian matrix in this basis will then be

Hij = 〈i |H | j〉 (21)

(b) We set 〈1 |H | 1〉 = 〈2 |H | 2〉 = ε0 and 〈1 |H | 2〉 = −V . The eigenvalues and (normal-
ized) eigenvectors are then

ε± = ε0 ± V

ψ± =
1√
2

(
1
∓1

)
(22)

(c) The lowest energy state will have both electrons in the bonding state (that we’ve labeled
ψ−). Note that the electrons will have opposite spins to satisfy the Pauli exclusion
principle, even though we have not included spin in our Hamiltonian. Setting ε0 = 0 and
V = −2 eV, the total electronic energy is

Ee = −2V = −4 eV (23)

(d) We now let V depend on the separation of the atoms a d−2, and we add a repulsive
potential that goes as d−4 to prevent the molecule from collapsing. The total electronic
energy is then

Ee = −2A

d2
+
B

d4
. (24)

Minimizing this with respect to d yields

d0 =

√
B

A
= 1 Å, (25)

where we have plugged in A = 2 eV Å
2

and B = 2 eVÅ
4
. A plot of the potentials is

shown in Figure 2.

(e) We can minimize this numerically using Mathematica’s built-in NMinimize[] function,
which uses a simplex method. Doing so yields the same result as our analytic calculation:

d0 = 1.0 Å (26)

(f) The Taylor expansion of the total energy is given by

E(d) ≈ E(d0) +
∂E

∂d

∣∣∣∣
d=d0

(d− d0) +
∂2E

∂d2

∣∣∣∣
d=d0

(d− d0)2. (27)

The first derivative at d0 vanishes (recall that requiring this was how we solved for d0 to
begin with). Plugging in for E(d0) and the second order term yields

E(d) ≈ −A
2

B
+

8A3

B2
(d− d0)2, (28)

where, recall, that d0 =
√
B/A. This is the harmonic approximation.
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Figure 2: Plot of the attractive and repulsive potentials, exactly (solid line) and in the harmonic
approximation (dashed line).

(g) If the energy expression governs the dimer dynamics, we can write the equation of motion
as

Mẍ = −Kx, (29)

where K is the force constant (in general, this is a matrix, but this is a one-dimensional
problem) and M is the reduced mass. The reduced mass is M = m/2, and we already
calculated the force constant in the harmonic approximation above to be

K =
∂2E

∂d2

∣∣∣∣
d=d0

=
8A3

B2
. (30)

Recall that the angular frequency is given by

ω =

√
K

M
=

4

B

√
A3

m
. (31)

Plugging in for A, B, and m (make sure you have the correct units here!), we have

ω = 5.553× 1014 rad s−1

f = 8.838× 1013 Hz
(32)

(h-j, k) The results of the numerical calculation are shown in Figures 3, 4, and 5. The Matlab
code used to generate these results is included at the end of the solutions.
We can calculate the temperature from the velocity of our atoms. From the equipartition

theorem, we can write the temperature in terms of the average square velocity as

T =
mv̄2

2kB
. (33)
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Figure 3: Position, velocity, and acceleration of one of the two atoms.

Figure 4: The velocity-velocity correlation function as a function of time.

(Note that since we have two hydrogen atoms, the total energy is kBT .) Plugging in the
mass of the hydrogen atom, Boltzmann’s constant, and the average (RMS) velocity, we
have

T = 167.1 K (34)

.
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Figure 5: Bonus - the Fourier transform of the velocity-velocity correlation function.

Problem 5 (Bonus)

The Fock space is described by occupation numbers. The dimension of the Fock space there-
fore depends on the number of electrons and sites in the system. Our system has two sites.
For no electrons then, the Fock space is 1 dimensional; for one electron, it is 4 dimensional;
for two electrons, it is 6 dimensional, and so on.

For this system with two electrons, the possible basis kets are

|↑ ↑〉 , |↓ ↓〉 , |↑ ↓〉 , |↓ ↑〉 , |↑↓ 0〉 , |0 ↑↓〉 (35)

We can write this in the basis of the Fock space as

|1100〉 , |1010〉 , |1001〉 , |0110〉 , |0101〉 , |0011〉 . (36)

To write 〈xx′ | ↑ ↓〉, first note that we can separate the spin and position wave functions.
Because electrons are fermions and obey the Pauli exclusion principle, the total wave function
must be antisymmetric. Finally, the product of an antisymmetric function and a symmetric
function is antisymmetric, so we only need to antisymmetrize one of the wave functions. Doing
so with the position wave function, we have

〈xx′ | ↑ ↓〉 =
1√
2

[
φa(x)χ+φb(x

′)χ− − φa(x′)χ+φb(x)χ−
]

(37)
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Matlab code for Problem 4

%%%%%%%%%%%%%%%%%%%%%%%%%% Definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A = 2 * 1.6 * (10^(-19))*(10^(-20)); % Is given for the potential

B = 2 * 1.6 * 10^(-19)*(10^(-40)); % Is given for the potential

mH = 1.67 * 10^(-27); % Mass of one hydrogen

M = mH/2; % Reduced mass of hydrogen molecule

kB = 1.38064852e-23;

w = 9.81602*10^13; % Calculated frequency from part (g)

T = 2*pi/w; % Time needed for one period

dt = T/100; % Arbitrarily chosen time step of 100th of T

N = 1000; % Number of iterations

r1 = zeros(1,N); % Predefined position vector of atom 1

r2 = zeros(1,N); % Predefined position vector of atom 2

a1 = zeros(1,N); % Predefined acceleration vector of atom 1

a2 = zeros(1,N); % Predefined acceleration vector of atom 2

t = zeros(1,N); % Vector for my time steps, used for plotting

d = zeros(1,N); % Distance vector between atom 1 and 2

v1 = zeros(1,N); % Velocity vector of atom 1

v2 = zeros(1,N); % Velocity vector of atom 2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% For the first time step dt we need to calculate the new ri(dt) and rj(dt) by hand:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r1(1,1) = 0*10^(-10); % Initial position condition for atom 1

r2(1,1) = 2*10^(-10); % Initial position condition for atom 2

v0 = 0; % Initial velocity, will be assigned to both

atoms

v1(1,1) = v0; % Initial velcoity of atom 1

v2(1,1) = v0; % Initial velocity of atom 2

t(1,1) = dt; % Initialization of the time vector going in

increments of dt

t(1,2) = 2*dt;

d(1,1) = abs(r2(1,1)-r1(1,1)); % Calculates the initial distance using the

initial position conditions

% Calculation of the initial accelerations for the first time step

a1(1,1) = 1/mH *(r1(1,1)-r2(1,1))*(4*B/d(1,1)^6 - 4*A/d(1,1)^4);

a2(1,1) = -1/mH *(r1(1,1)-r2(1,1))*(4*B/d(1,1)^6 - 4*A/d(1,1)^4);

% Using our calculated accelerations, we can find the new positions after

% the time step dt.

r1(1,2) = r1(1,1) + dt*v0 + (dt^2/2)*a1(1,1);

r2(1,2) = r2(1,1) + dt*v0 + (dt^2/2)*a2(1,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% After the first values are calculated, we can use an algorithm to find
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% the remaining values for the acceleration, position and velocity

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 3:N

d(1,i-1) = abs(r1(1,i-1) - r2(1,i-1));

a1(1,i-1) = 1/mH *(r1(1,i-1)-r2(1,i-1))*(4*B/d(1,i-1)^6 - 4*A/d(1,i-1)^4);

a2(1,i-1) = -1/mH *(r1(1,i-1)-r2(1,i-1))*(4*B/d(1,i-1)^6 - 4*A/d(1,i-1)^4);

r1(1,i) = 2*r1(1,i-1) - r1(1,i-2) + (dt)^2*a1(1,i-1);

r2(1,i) = 2*r2(1,i-1) - r2(1,i-2) + (dt)^2*a2(1,i-1);

t(1,i) = i*dt;

v1(1,i-1) = (r1(1,i)-r1(1,i-2))/(2*dt);

v2(1,i-1) = (r2(1,i)-r2(1,i-2))/(2*dt);

end

d(1,N) = abs(r1(1,N) - r2(1,N));

a1(1,N) = 1/mH *(r1(1,N)-r2(1,N))*(4*B/d(1,N)^6 - 4*A/d(1,N)^4);

a2(1,N) = -1/mH *(r1(1,N)-r2(1,N))*(4*B/d(1,N)^6 - 4*A/d(1,N)^4);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% Plots of the result %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure;

subplot(3,1,1)

plot(t,r1,t,r2)

xlabel(’Time [s]’)

ylabel(’Position of atom 1 and 2 [m]’)

legend(’r1(t)’, ’r2(t)’);

subplot(3,1,2)

plot(t(1,1:N-1),v1(1,1:N-1))

xlabel(’Time [s]’)

ylabel(’Velocity of atom 1 [m/s]’)

subplot(3,1,3)

plot(t,a1)

xlabel(’Time [s]’)

ylabel(’Acceleration of atom 1 [m/s^2]’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% CALCULATION OF THE AUTOCORELLATION FUNCTION %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

j = 2; % Because we used the initial velcocity condition v0

= 0, which is assigned to the vector position v1(1,1), we start at v1(1,2),

which is a non-zero velocity, so j=2 defines our arbitrarily chosen starting
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point t0.

tau = N-j; % Since t= tau*dt, this calculates the total number

of taus possible until we reach the maximum time, which is defined by dt and the

number of iterations

sum1 = zeros(tau-1,1); % Calculates the sum of the numerator of atom 1 of

the autocorrelation function

sum2 = zeros(tau-1,1); % Calculates the sum of the numerator of atom 2 of

the autocorrelation function

Denom1 = zeros(tau-1,1); % Calculates the Denominator of atom 1 of the

autocorelation function

Denom2 = zeros(tau-1,1); % Calculates the Denominator of atom 2 of the

autocorelation function

t = t’/T; % Time as a fraction of T, looks better for plots

this way

%%%%%%%%%%%%%% Calculation of the numerator sums %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for x = 1:tau-1

for i = j:N

if i+x <= N-1

sum1(x,1) = sum1(x,1) + v1(1,i+x)*v1(1,i); % Adds v1(t0+tau)*v1(t0) to

the previously calculated value

sum2(x,1) = sum2(x,1) + v2(1,i+x)*v2(1,i); % Adds v2(t0+tau)*v2(t0) to

the previously calculated value

else

break;

end

end

sum1(x,1) = 1/(N-x-j) * sum1(x,1); % Divides the calculated sum by the

number of terms to get the average

sum2(x,1) = 1/(N-x-j) * sum2(x,1); % Divides the calculated sum by the

number of terms to get the average

end

%%%%%%%%%%%%%%%%%%%%%% Calculation of Denominators %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for x = 1:tau-1

for i = j:N-1

Denom1(x,1) = Denom1(x,1) + v1(1,i).^2; % Adds v1(t0)*v1(t0) to the

previously calculated term

Denom2(x,1) = Denom2(x,1) + v2(1,i).^2; % Adds v2(t0)*v2(t0) to the

previously calculated term

end

Denom1(x,1) = 1/(N-j) * Denom1(x,1); % Divides the calculated sum by the

number of terms to get the average

Denom2(x,1) = 1/(N-j) * Denom2(x,1); % Divides the calculated sum by the

number of terms to get the average
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end

p = sum1./Denom1 + sum2./Denom2; % Calculates the correlation function

g = p(1:tau-1); % Because our velocities are only defined

for N-1, we only use tau-1 values.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% Plots of the result %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure;

plot(t(j+1:334,1),g(1:332,1));

xlabel(’Time steps t/T [unitless]’)

ylabel(’Velocity autocorrelation function g(t)’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% CALCULATION OF THE FOURIER TRANSFORM %%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

W = zeros(N-j-1,1); % Calculates each point of the W(t) function under the integral

% Calculation of W(t) and the cosine for each time step dt

for i = 1:N-1-j

W(i,1) = 0.42-0.5*cos(pi*i*dt/(N*dt)) + 0.08*cos(2*pi*i*dt/(N*dt));

end

t = t*T;

L = N; % Sampling length

Fs = 1e15; % Sampling frequency

T1 = 1/Fs;

f = 1/T*(g.*W); % Function to use to perform the FFT

F = fft(f); % Fast Fourier Transform of our function f

figure;

P2 = abs(F/L);

P1 = P2(1:L/2+1); % We are only interested in the first half of the calculated

values

P1(2:end-1) = 2*P1(2:end-1); % The first number is the constant a0 so we start

plotting from the vector component

freq = Fs*(0:(L/2))/L; % Frequency for plotting

plot(freq,P1); % Plots the FFT vs frequency

xlabel(’\omega (rad/s)’)

ylabel(’g(\omega)’)

axis([0,1e14, -inf, inf]);

temperature = 0.5*(mean(v1.^2)*mH/kB ) %#ok<NOPTS>
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