
Homework 2 Solutions

Problem 1

1 × 1 cell:

The crystal structure of graphene is a hexagonal lattice with a two-atom basis. The 1×1
cell is defined by the primitive vectors
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where a is the distance between nearest-neighbor carbon atoms in the honeycomb lattice.
The primitive lattice vectors are illustrated in Figure 1. There are two atoms in this cell,
located at

τA = (0, 0) (3)

τB = (a, 0) . (4)

We can find the reciprocal lattice vectors using ai · bj = 2πδij . Doing so yields
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3R30 cell of graphene is illustrated in Figure 2. The lattice vectors for this
cell are
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Figure 1: Graphene 1× 1 cell.

There are six atoms in this cell, located at

τ1 = (0, 0) (9)

τ2 = a (1, 0) (10)
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If this isn’t clear to you, note that not all of the atoms in the cell in the illustration are
unique. There are only 3 unique atoms on the corners and sides of the cell–the others
are periodic images. The other 3 atoms are inside the cell.

Problem 2
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Figure 2: Graphene
√

3×
√

3R30 cell.

We can find the bond angle using elementary vector analysis. In the conventional cell, two of
the nearest neighbors of the atom at the origin are in the x̂+ ŷ+ ẑ and −x̂− ŷ+ ẑ directions.

We can find the angle between these two vectors using θ = arccos
(

a·b
|a||b|

)
. The argument of

the inverse cosine is then −1/3, which gives us an angle of

θ = 109.471◦ = 1.911 rad (15)

Problem 3

The reciprocal lattice vectors for the primitive fcc cell are (see Problem 4)

b′1 =
4π

a

1

2
(ŷ + ẑ− x̂) (16)

b′2 =
4π

a

1

2
(ẑ + x̂− ŷ) (17)

b′3 =
4π

a

1

2
(x̂ + ŷ− ẑ) , (18)

where the primes are to distinguish these vectors from the conventional cell’s reciprocal lattice
vectors. In the conventional cell basis, the planes (100) and (001) are normal to the reciprocal
lattice vectors b1 = 2π

a x̂ and b3 = 2π
a ẑ. To find the miller indices in terms of the reciprocal

lattice vectors of the primitive cell, we need to find the linear combination of reciprocal lattice
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vectors that will equal the vectors in the conventional cell. Multiplying b′2 and b′3 by 1/2 and
adding them together yields

1

2

(
b′2 + b′3

)
= b1 =

2π

a
x̂. (19)

Removing the factor of 1/2, we can therefore write the (100) plane in the miller indices of the
primitive cell as (011)′. We can do the same for the (001) plane. Altogether, we have

(100)→ (011)′

(001)→ (110)′
(20)

Problem 4

Recall that the reciprocal lattice vectors are given in terms of the primitive lattice vectors by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(21)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(22)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(23)

Applying these formulas, we find that the reciprocal lattice of the simple cubic lattice is a
simple cubic lattice with side lengths 2π/a. The reciprocal lattice of an fcc lattice is a bcc
lattice with side lengths 4π/a, and the reciprocal lattice of a bcc lattice is an fcc lattice with
side lengths 4π/a. Explicitly, the reciprocal lattice vectors are

sc: b1 =
2π

a
x̂, b2 =
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a
ẑ
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bcc: b1 =
4π
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2
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(24)

Problem 5

Recall that the structure factor is given by

SK =

n∑
j=1

exp (iK · dj) . (25)
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The conventional cell of diamond has 8 atoms located at

d1 = (0, 0, 0) (26)

d2 =
a

2
(1, 1, 0) (27)

d3 =
a

2
(0, 1, 1) (28)

d4 =
a

2
(1, 0, 1) (29)

d5 =
a

4
(1, 1, 1) (30)

d6 =
a

4
(3, 1, 3) (31)

d7 =
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4
(1, 3, 3) (32)

d8 =
a

4
(3, 3, 1) (33)

where a is the side length of the cell. Because the conventional cell is cubic, a general reciprocal
lattice vector can be written

K =
2π

a
(ν1x + ν2y + ν3z) . (34)

Plugging these into the expression for the structure factor yields

SK = 1 + eiπ(ν1+ν2) + eiπ(ν2+ν3) + eiπ(ν1+ν3)

+ e
iπ
2 (ν1+ν2+ν3) + e

iπ
2 (3ν1+ν2+3ν3) + e

iπ
2 (ν1+3ν2+3ν3) + e

iπ
2 (3ν1+3ν2+ν3) (35)

= 1 + eiπ(ν1+ν2) + eiπ(ν2+ν3) + eiπ(ν1+ν3)

+ e
iπ
2 (ν1+ν2+ν3)

[
1 + eiπ(ν1+ν2) + eiπ(ν2+ν3) + eiπ(ν1+ν3)

]
=
(

1 + e
iπ
2 (ν1+ν2+ν3)

)(
1 + eiπ(ν1+ν2) + eiπ(ν2+ν3) + eiπ(ν1+ν3)

)
=
[
1 + i(ν1+ν2+ν3)

] [
1 + (−1)(ν1+ν2) + (−1)(ν2+ν3) + (−1)(ν1+ν3)

]
. (36)

If ν1, ν2, and ν3 are all even or all odd, the second factor is non-zero. When they are all odd,
the first factor is also non-zero. If they are all even and are equal to a multiple of 4, the first
factor is non-zero. The structure factor is zero when ν1 + ν2 + ν3 = 2(2k + 1) or when one
(two) of the νi are even (odd) and the last one is odd (even).

Problem 6

The Wigner-Seitz cells for the 2D square, rectangular, and hexagonal lattices are shown in
Figures 3, 4, and 5.
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Figure 3: Wigner-Seitz cell of the 2D square lattice.

Figure 4: Wigner-Seitz cell of the 2D rectangular lattice.

Figure 5: Wigner-Seitz cell of the 2D hexagonal lattice
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