Homework 4 solutions

Problem 1

Displacements hetween cells are related to one another through a phase ™7, according to

the Bloch theorem. We want the displacement pattern on the second atom in the fourth cell
and first atom in the fifth cell when k = %7 /a, given the displacement pattern in the zeroth
cell ug = (0.1a, —0.05a) . Using the Bloch theorem, we therefore have

wy = e Ty, — (9)
Uy = ebe ity — . (10)

Adding these to the coordinates of the atoms in the fourth and fifth cells and taking the
difference yields

A (atom 4b ++ atom 5a) = 0.617a (11)




Problem 2

The potential energy of this configuration of atoms is

k [{951 —2)" 4 (22 — 23)" + (x5 —24)” +] - (46)
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U=

The foree constant matrix is given by the second derivative of the energy with respect to
displacements. Therefore,
ko -k 0 0
-k 2 -k D
E=10o % 2% k| (47)
o0 -k k

The equation of motion can be written in matrix form as
Mx = —-FRx, (48)

where M = ml;. Assuming our solutions are oscillatory—that is, assuming x o ¢™* this
hecomes
wiMx = Kx. (49)

This is a generalized eigenvalue problem. Rearranging, we can write it as a reqular eigenvalue
problem:
(M7'K —w?l)x =0, (50)

Since we have 4 atoms, each with one degree of freedom, this system will have 4 eigenvalues
and 4 associated normal modes. One eigenvalue will be 0, which will be associated with
translations along the r-axis, and the other 3 eigenvalues will be non-zero. Calculating the
frequencies explicitly, we have

wp=0 (51)
w=y/(2-V2) = (52)
w == (53)

ws=1/(2+v2) = (54)

—



Problem 3
The potential energy for the closed loop configuration is given by

U= %f{ [(931 —29)® + (T2 — 73)° + (23 — 74)" + (T4 — ml}z} ’ (55)

The force constant matrix is then
2K -K 0 —-K
-K 2K —-K 0

E=1 9 -k o2k -K|- (56)

-K 0 -K 2K

Note that this is exactly the same foree constant matrix as in Problem 12, but with non-zero
elements for Ky = K. The eigenfrequencies for this system are

Wn = 0 {5 T:I

[2K

[ 2K
(o — - 50
Lo - (59)

W =4 —. (60)

Let us now do this using periodic boundary conditions. We will use the same machinery as
in Problem 4. Reeall that the dynamical matrix is given by

Dﬁv[k} = Zﬁ

We already explicitly caleulated the foree constant matrix, but it will be useful for ealeulating
the dynamical matrix if we write it in terms of indices. Doing so, we have

Dy (T, — T )oK Fn—Tnr), (61)

Dw{rn — I'n-':| =K (251-“11 — d‘_n(rt’—l} — an[n-'+1]J . {62]

Plugging in, we then have

K ) ) e
Dy (k) = = z (28nnr — Bpinr—1) — Sngnr41y) € K Fn—Tar)
.nJ'
= K [g_ g—ika _ Eih‘n]
m
2K
= (L coska). 63
— (1 —coska) (63)
As in Problem 7, the periodicity restricts the allowed values of k to be
2rn 2mn
=N T 64
alV 4a (64)

The allowed values of k are then k = 7/a{0, £1/2, 1}. Note that we are using —m/2a
rather than 37/2a to stay in the first Brillonin zone. Finally, since D(k) = w?(k), the
eigenfrequencies are

Wn = 0 {65)

[2K
Wy = 66
1 { ]

2K
. o 67
Wy =14/ m (67)
ws =) K (69)

L



Problem 4
The energy of this chain is given by the sum of the energy in each spring:
U = 5K wlra) - wlrac)
_ %K; [03(ra) — 20(ra)u(rns1) + 13 (P )]
= K3 [u¥(ry) — ulrp)ulro)] (12)

where we shifted the sum for the last term and combined it with the first. The dynamical
matrix is given by
1

Dyy(k) = Z ——— D (T — Ty Je ™ T =), (13)
A/ Ty

where D}w(rﬂ1 —Ipy) = W 18 the foree constant matrix. The foree constant matrix
is (see lecture06.pdf if you need a reminder on how to calculate it)

D#y{rn — I'n-':] =K [25“.“: — &(n+1}n" — 5[ﬂ_|]ﬂrj . {14]

Plugging in to the formula for the dynamical matrix yields
K

Dyu(k) = — 3 (2 — Swrinoty — F(mpy) €070
n.l'
_ K [2— e—tka _ gika]
m
2K
= H{l—coska) = wi(k). (15)

Thus, we have our dispersion relation. Note that becanse of the periodicity, the only allowed
k are k = 27n/Na, and there are NV of them. A plot of the dispersion is shown in Figure
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Figure 2: Dispersion relation for the 1D infinite chain.

To caleulate the density of states, we will use

i 1

q(E) = EM (16)

Plugging in the dispersion relation, we find

aik) {states/ewiiniteal)

1 (2K |1 —coska
E) = — il I it I 17
‘q{]:rrm|sinka (17)
The density of states diverges at the zone boundary. A plot of of the density of states is shown B &

in Figure Figure 3: Density of state of the 1D fnfinite chain.



Problem 5

From the lecture notes, we recall that the dispersion relation for the generalized one-dimensional
elastic chain is

wik) = ‘/%Zﬁp[l — cos kap). (20)

P

This is similar to Problem 7, but here we have an additional sum over spring constants.
The sound veloeity is the group velocity at small k. Expanding the dispersion relation about
small k yields

w(k) == % Zﬁ:pp?. (21)
P

Taking the derivative with respect to k, we find the sound velocity to be

a
Vg = —= Kpp? (22)
T




Problem 6

The potential energy for this system is given by
1
U-3% [ 2 ra) — wa(ra))? + 7 (ualrm) — ws(rms1))?] (23)

where, similar to our expression in Problem 7, u;(ry,) is the displacement of atom i relative
to its associated Bravais lattice point r,. Note that atom 1 is located on the Bravais lattice
point r, and atom 2 is located at ry, +d = ry, +a/2, in the middle of the primitive cell. Now,
recall that the dynamieal matrix is given by

1 ;
0, k) = ————D,, (1, — T e AT —Tar), 24
e8] = 3 =Dy (5~ o) . (24)
where D}w{rn — ) = m is the force constant matrix. Note that this expression
differs from the one in Asheroft & Mermin. This definition vields an eigenvalue problem, while
A&M's definition yields a generalized eigenvalue problem. To ecalculate the force constant
matrix, we will first need the first derivatives of the potential:

ﬁu?g-n) = &(u(rn) — ua(rn)) + 7(ur(ra) — wa(rn_1)) (25)
—'D‘HL:E;‘") = K(ta(rn) — () + Y{ue(ry) — uy(rngeq)). (26)

The foree constant matrix elements are then

U

_— = =+ ¥ tsm.,J 27

e i Gl (27)
U

— = —Kipp — -1 28

Bttx (1) Ptz (7o) T (28)
U

Bz () Ot1 (T = —kdnnr = it 1)ns (29)
U (x4 9)oum. (30)

a’!.l.g(?‘“ ] aﬂ-;l:f‘n.- }

Plugging in to our expression for the dynamical matrix, we have

Brme —ik{na—m'a
Duy(k) = © —== (i +y)e Hnama)

K+
= 31
x (31)
K+
Daalk) = mT (32)
D]g(k} — Z% (—.‘Eﬁ“m _ Tﬁfn—l:ln’) g~ ik(na—(n"+1/2)a)
VT ikaye . ka2
= —— [ne yemikarz] (33)
1 ; ;
DZ](k} = E (_"E‘Enn’ _T’Efn+]}n4_}E_Ik[[n-'-”z]n_n a)
-
1 —i ika w
== [ne kaf2 4 yeik ;;] — Diy(k). (34)
The eigenvalues are
1 ) -
a;;"’:[k) =— (h’ +y e ik \/ez“"‘ 2y cos(ak) + K2 + "r'z)) (35)

and the corresponding eigenvectors are

gtk TR (D cos(ak) + 72 + A2
s (k) = (=F Ve (G omak) L1). (36)

Evaluating these eigenvectors at I and simplifying, we have

g

And at the zone-edge (k = w/a), we have

uy (g) = (+i,1) (38)




Problem 7

The general form of & is

e N 0
€
BG) = (g utm)- (39)
where ¥; and zp are the basis vectors for our system. Since we set vy = 0 and 2z = a/2 in
Problem 10, we have
1 0
RB|G) = (l] E._.:-il) ) {40)

Using B to make a similarity transformation of D(k) yields

D'(k) = B-'D(k)B

1 ( K+ _ {Keia{k-i—g:lf‘1+,.r.E—inl:k—G}lu"Z})

m \ = (ke alB+E)2 4 o pialk—G)/2) (k+7)

= (41)

It is not obvious that this equals Dk + G), but recall that D{k) = «?(k). Calculating the
eigenvalues, we find
el 2 2
(w')3 (k) = wi(k + G) = wi(k). (42)

Therefore, the eigenvalues are periodic in reciproeal space, and D'(k) = D(k + G).
The eigenvalue problem with the transformed matrix is

0= [D'(k) - ()1)] v

= [B‘lﬂ{k}ﬂ — {u’jzf]] V. (43)
Clan we act on this equation to get an eigenvalue problem for D(k) in terms of the eigenvectors
vof D' (k)7 We can. Left multiplying by B and inserting I = B~ ! B just left of the eigenvector,
we have
N=AH [B_'D[k]B - uzf}] B 'Bv

= [D[k] —wT ]] Bwv. (44)

MNote that here we have used our previous result from this problem, where we showed that

k) and D(k) have the same eigenvalues. Comparing with Problem 4, we see that the
eigenvectors for the transformed matrix and the original matrix are related by B:

u= Bv. (45)



Problem 8

(a) For each value of k, there are 3N normal modes and corresponding eigenfrequencies.
Since there are 6 distinct bands, this tells us there are 2 atoms.

(b} The lowest three modes are the acoustic modes, and the upper three modes are the
optical modes. The branches are labeled in Figure[4

Figure 4: Labeled branches of the phonon band structure.

(c) The speed of sound is the group velocity of the transverse acoustic mode, which is given
o dw A
vy = AR (18]
Note that this 15 true at small values of k, but we will have to estimate it using larger
values of kB because we do not have the data used to make the plot. To calculate the
derivative numerically, we will use the frequency at I and the frequency at X /4. NiAl
has a B2 crystal structure, which 15 a BCOC lattice where the body-centered atom is a
different species than the atoms at the corners. Therefore, the high-symmetry Ek-points
I' and X /4 labeled in the phonon dispersion are located at (0, 0, 0) and %{11 0, 0},
respectively, and from the paper cited, the lattice constant is awmja = 2006 &. The
frequencies at these points are approximately w(I') = Oem™" and wy (X/4) = 50cm™!
for the lower branch and wy(X/4) = 90cm™! for the upper branch. Plugging in (and
taking care with the units!) to caleulate the velocities for each branch and then averaging
them, we therefore can estimate the group velocity along the I' to X direction as

v (T — X) = 3885ms " (19




