Imaging Maya Pyramids with Cosmic Ray Muons

An Application of the Tools of High Energy Physics
The Maya: Extraordinary American Culture
Some Background

- **1839-ff**: John Lloyd Stephens with Frederick Catherwood, artist
 - *Incidents of Travel in Central America, Chiapas, and Yucatan* (1841)
 - *Incidents of Travel in Yucatan* (1843)

- **Linda Schele** (1942 - 1998) UT Austin
What is the internal structure?

Measure Spatial Distribution of Material *Inside* by Muon Tomography
This is Proven Technology

- Luis Alvarez* invented muon tomography in 1960’s to study the 2nd Pyramid of Chephren
- Spark chambers used to track muons from Belzoni Chamber
- System worked well—could see structures of caps
- Main discovery: No other chambers exist

Cosmic Rays

- Very high energy “primary” cosmic rays - typically protons - interact in upper atmosphere
- Shower of unstable sub-nuclear particles created: typically pions, kaons
- Muons and neutrinos are decay products of pions and kaons
Muon Interactions in Matter

- Energy loss: predominately by ionization

\[\frac{dE}{dx} \approx 2.3 \text{ MeV/gm/cm}^2 \approx 0.6 \text{ GeV/m in rock} \]

- Multiple-Coulomb Scattering

\[\delta \theta \approx \frac{13.6 \text{ MeV}}{\sqrt{E_i E_f}} \sqrt{\frac{L}{X_0}} \]

\[E_i - E_f \approx L \frac{dE}{dx} \]

dirt, rock:
\[X_0 \approx 27 \text{ gm/cm}^2 \]
Arrangement Involving Cylindrical Detectors

- Use 2 or more detectors
 - Compensates for “blind cone” inherent in cylindrical detectors
 - Improved stereo sampling of target volume
 - Symmetry of cylindrical detectors good for measuring “average” image

- Minimizes excavation
Detectors

- **Cylindrical structure**
 - 1.5 m diameter
 - 4.5 m long

- **Muon tracking**
 - 3 stereo layers
 - WLS-scintillator technology
 - PMT readout

- **Threshold energy selection**
 - Use inner volume as a Cherenkov radiator
 - PMT readout

- **Other systems**
 - Electronics
 - Mechanical
 - Power/communications
Frame

Completed frame during lay-up of scintillator strips

Aircraft construction techniques to reduce weight

PMTs and electronics will be mounted in end-rings
Tracking System Elements

“MINOS” scintillator
30 mm wide
10 mm thick

WLS fiber readout
2 helical layers
1 axial layer (center)
441 total strips
Scintillator Installation

1st end of strip secured with machine screw, temporary straps applied.

Strip attached along full length with double-sided adhesive tape.

Helical wrap applied with twist; temporary straps tensioned.

Secure 2nd end of strip.

WLS fibers epoxied into groove in scintillator, covered by Al tape.

Plug fiber into PMT cookie.
Detector Electronics Systems

- Data from detector
 - Tracking: 2X448 “hit” bits
 - Cherenkov: Analog out

- Trigger
 - Based on tracking information only
 - Programmable logic

- DAQ
 - All tracking bits
 - Cherenkov hits above pedestal

- Control
 - Trigger/DAQ control
 - Monitor all detector systems
Trigger Requirements

- Use only tracking information
- Require:
 - \(>\geq 2 \) Hit “Triplets”
 - Chord \(c > c_{\text{min}} \)
 - Direction ?
- Flexible definition of Triplet
 - Coincidence gate: 25–50 ns
 - Number/pattern of hits to balance:
 - Noise - singles rates
 - Inefficiencies
- Typical rates:
 - True events \(\sim 100 \) Hz
 - CR singles:
 - \(\sim 4 \) KHz full detector
 - \(\sim 25 \) Hz per strip
Imaging

- Have begun studies of imaging with a single detector
 - Stereo pairs of spherical projections
 - Radon transformations

- Collaboration expected with UT CS experts

- Extensive sets of tools available:
 - MATLAB
 - LabVIEW
This is Also Real

- Detector is complete and works!
- Singles rates on all strips <100 Hz
 - Consistent with cosmic rays and light-leaks in test setup
 - FEBs are all installed and working—no surprises
- Currently focused on DAQ and triggering firmware
People & Things

- UT Physics
 - Jared Bennatt, Mark Cartwright
 - Brian Drell, JJ Hermes
 - Becket Hui, Jeremy Johnson
 - K. Krishnakumar, Nicholas Raspino
 - Cesar Rodriguez, Anandi Salinas
 - Mark Selover, Derrick Tucker
 - Brad Wray, Eric Wright
 - H. Adam Stevens
 - Austin Gleeson, RFS

- UT Electrical & Computer Eng.
 - Bill Bard, Lisy John
 - Carlos Villarreal
 - Elizabeth Van Ruitenbeek
 - Daniel Garcia, Nakul Narayan

- Fermilab—Scintillator Production
 - Anna Pla-Dalmau

- Harvard HEPL—Front-end Electronics
 - John Oliver, Sarah Harder

- Other physicists who contributed in the early stages
 - Prof. Rich Muller, UC Berkeley
 - Dr. Dick Mischke, LANL

- UT Mesoamerican Archaeological Research Laboratory (MARL)
 - Prof. Fred Valdez, Director

- National Instruments
 - Hugo Andrade, Joe Peck
UT Mesoamerican Archaeological Research Laboratory
Potential Target Structure

- La Milpa site has relatively good access/infrastructure
- Developing simulation tools to optimize detector design and placement
- Plan excavations for deployment
Other Potential Applications

- Muon Tomography is good for monitoring large underground volumes (~100 m3), provided:
 - You are interested in structures of scale 1 m - 10 m
 - You can afford to wait for weeks to months to acquire the data
 - The volume of interest is between your detector and the surface

- Geological studies of aquifers
 - Shapes of underground cavities
 - Time-dependence of water levels

- Monitoring of geology surrounding underground sites, e.g. underground nuclear waste storage
Summary

- Muon tomography is feasible
 - Proven in Alvarez experiment
 - New technologies enable simplified detector design
 - WLS/scintillator tracking well-developed/good match
 - Cherenkov threshold detector is indicated
 - New approach to problem of low-energy multiple-scattering
 - Well-understood physics/technology
 - Simplifies system design

- Excellent project for engaging students

- Other applications are possible

- Maybe we can help to learn more about the Maya!