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Abstract

CrossMark

We derive axisymmetric equilibrium equations in the context of the hybrid Vlasov model with
kinetic ions and massless fluid electrons, assuming isothermal electrons and deformed
Maxwellian distribution functions for the kinetic ions. The equilibrium system comprises a
Grad-Shafranov partial differential equation and an integral equation. These equations can be
utilized to calculate the equilibrium magnetic field and ion distribution function, respectively,
for given particle density or given ion and electron toroidal current density profiles. The

resulting solutions describe states characterized by toroidal plasma rotation and toroidal electric
current density. Additionally, due to the presence of fluid electrons, these equilibria also exhibit
a poloidal current density component. This is in contrast to the fully kinetic Vlasov model,
where axisymmetric Jeans equilibria can only accommodate toroidal currents and flows, given

the absence of a third integral of the microscopic motion.

Keywords: hybrid kinetic models, magnetic confinement, tokamak equilibria

1. Introduction

Hybrid Vlasov models play an important role in examin-
ing the complex behavior of multiscale plasmas that fea-
ture both a fluid bulk and energetic particle populations not
amenable to fluid descriptions. One specific branch of hybrid
models that has received significant attention, primarily for
studying phenomena in ion inertial scales such as turbulence
and collisionless reconnection, focuses on electron—ion plas-
mas where electrons are treated as a fluid while ions are
treated kinetically (e.g. [1-8]). In our recent work [9], we
employed such a hybrid model, featuring massless isothermal
electrons and kinetic ions, to investigate one-dimensional
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Alfvén—-BGK (Bernstein—Greene—Kruskal) modes as station-
ary solutions to the model equations. We demonstrated
that the one-dimensional equilibrium equations constitute a
Hamiltonian system for a pseudoparticle, which can exhibit
integrable or chaotic orbits, depending on the form of the dis-
tribution function. A natural extension of this work would be
the construction of 2D-equilibria which can be used as ref-
erence states for studying reconnection, instabilities and wave
propagation, or even macroscopic equilibria of fusion plasmas.

Plasmas in fusion devices like the tokamak, are enriched
with significant populations of energetic particles. It is thus
expected that the distribution of those particles in the phys-
ical and the velocity space might affect macroscopic equilib-
rium and stability properties. For this reason hybrid models
have also found applications in the description of multiscale
dynamics of tokamak plasmas (e.g. [10-12]). However, des-
pite the utility of hybrid and kinetic descriptions for investig-
ating dynamical processes, there has been limited progress in
constructing self-consistent equilibria within the framework
of these models. One important limitation arises from the

© 2024 The Author(s). Published by IOP Publishing Ltd
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absence of a third particle constant of motion in the full-orbit
Vlasov description. Such an invariant would be crucial for con-
structing equilibria with characteristics relevant to tokamaks.
Efforts to build such equilibria using a fully kinetic Vlasov
description for both ions and electrons have been undertaken
in [13, 14]. Nevertheless, due to the presence of only one
momentum integral of motion for each particle species, spe-
cifically the particle toroidal angular momentum, these equi-
libria exhibit only toroidal current density and plasma rotation.
In contrast, the magnetohydrodynamic (MHD) fluid descrip-
tion of toroidal plasma equilibrium can accommodate both
toroidal and poloidal currents. Hence, although more funda-
mental, the kinetic approach appears to have limitations in
describing certain classes of equilibria compared to MHD.

To combine the advantages of both descriptions, we turn to
the hybrid model mentioned earlier. Even though it lacks a pol-
oidal particle momentum invariant, it can describe equilibria
featuring both toroidal and poloidal current densities, thanks
to the fluid treatment of electrons, which carry the poloidal
current component. Considering kinetic ions and fluid elec-
trons might be relevant to tokamak scenarions with signific-
antly higher ion than electron temperatures known as hot-ion-
modes achieved by injecting highly energetic neutral beams
(e.g. [15]). It is important to note though that a limitation of
the present model for a realistic description of fusion plas-
mas, is that it treats the entire ion population using the Vlasov
equation. This approach rules the possibility of macroscopic
ion flows and the existence of multiple ion species; thus fur-
ther model improvements are required. The present model
description serves as an initial step toward the development
of improved models that will incorporate multi-fluid-kinetic
descriptions, as exemplified in [16].

The rest of the paper is structured as follows: in section 2
we present the hybrid equilibrium model and in section 3
the axisymmetric equilibrium formulation is developed. In
section 4 we numerically construct particular tokamak-
pertinent equilibria presenting various equilibrium character-
istics and we conclude by summarising the results in section 5.

2. The hybrid model

The initial hybrid-Vlasov equilibrium system employed in [9],
consists of a Vlasov equation for kinetic ions, a generalized
Ohm’s law derived from the electron momentum equation,
the Maxwell equations, and an equation of state for the fluid

electrons:
vwﬁ+%amwayVJ:m (1)
B P
E—_"uxpyd*B_VP )
e en, en,
E=-V®, VxB=/ul, 3)
V-B=0, V-E=e¢e(n—n,), 4)

P, =n.kgT,, %)

where
n(xo) = [ @vrxs.n), ®
u(x,f)=n" /d3vvf(x,v,t) . @)

Note that the ion-kinetic contribution to the current density is
given by

n:/@wﬂ ®)

and thus the first term in the right hand side of (2) can be
expressed as —J; X B/(en,).

In addition to (1)—(5), an energy equation is needed to
determine 7,. Alternatively, it can be assumed that the elec-
trons are isothermal, i.e. 7, is constant throughout the entire
plasma volume, or it can vary with the magnetic flux func-
tion ¢ if we consider isothermal magnetic surfaces, i.e. T, =
T.(). An alternative to (5) would be an isentropic closure
of the form P, = cn}, or even anisotropic electron pressure
under appropriate conditions for the different components of
the electron pressure tensor. Here we consider isothermal elec-
trons T, = T,y = const.

Let us now write the system (1)-(5) in nondimensional
form upon introducing the following dimensionless quantities
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where Ry and By are the characteristic length and magnetic
field modulus, respectively. Additionally,

B o_<B
\/,uomfk)’ m’

are the Alfvén speed and the ion cyclotron frequency, respect-

ively and
4 /
di = 5 Ei = “ 2
Ro Honoe

is the nondimensional ion skin depth which is typically of the
order 10~2 in fusion devices. Notice that apart from nondimen-
sionalizing various physical quantities, we have also scaled
the nondimensional velocity by a factor of d;” ! The rationale
behind this scaling will be clarified in a subsequent explan-
ation. What is important to stress here, is that with careful
implementation of this scaling process, there are no inconsist-
encies in the nondimensionalization of the equations and the

va = (10)

an
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recovery of physical units in the final results. In view of (9) the
hybrid equilibrium system then can be written in the following
nondimensional form:

v-Vf+d *(E+vxB)-V,f=0, (12)
-V :%[(VXB—Jk)—dePg] , (13)
E=-V®, VxB=], (14)
V-B=0, &V -E=(n—n,), (15)
P, = kn,, (16)

where
K= ;‘f’:é a7

and B2 =13/c?. Taking the limit 32 — 0 we obtain the
quasineutrality condition n, = n, which will be applied in the
subsequent analysis.

In section 3, we will investigate two equilibrium scen-
arios: one with cold electrons (x =0) and the other with
thermal electrons (x ~ 1). We opted for the scaled nondimen-
sional particle velocity ¥ = v/(d;va) with the goal of attaining
tokamak-relevant temperatures assuming « ~ 1. It can be veri-
fied through (17) and using an Alfvén speed calculated from
tokamak-relevant values for the density and the magnetic field,
that x ~ 1 corresponds to T,y ~ 108 K.

As a closing note for this section, it is worth highlighting
that taking into account (16) and the quasineutrality condition
n, =n, Ohm’s law (13) can be expressed as follows:

V® =~ (VxB—J)xB—Vin (nd?”). (18)

!
n
3. Axisymmetric equilibrium formulation

We consider a plasma configuration with axial symmetry with
respect to a fixed axis, where all quantities depend on the
coordinates r,z of a cylindrical coordinate system (r,¢,z).
Note that z coincides with the axis of symmetry. In this case
the divergence-free magnetic field can be written in terms of
two scalar functions I and 1) as follows:

B=IV¢+Vi(r,z) x Vo, (19)
while the corresponding current density is
J=VXxB=—-A"YVep+VIxVop, (20)
where A* is the Shafranov operator given by
0 (10 0?
AY=r—|-—— —. 21
r8r<r8r>+3z2 @h

Next we will consider the three components of (18) along the
magnetic field, along the ¢ direction and along the V) direc-
tion. From the B projection we readily obtain

B-V [<I> —In (ndfﬂ)} —0, 22)

thus

@ —In(n") = G(v), (23)
where G(v) is an arbitrary function. From this equation we
can solve for n to find

@—G(ib)} . 24)

n = exp |:d2
ik

In the case G(1) = const. we recover the Boltzmann distribu-
tion. Next, to take the V¢ and V) projections we need first to
determine the direction of Jj.

According to Jeans’ theorem [17, 18], distribution func-
tions of the form f = f(Cy, C,...), where C; are particle con-
stants of motion, are solutions to the Vlasov equation (12). In
the absence of collisions, the particle energy H is itself a first
integral of motion. In nondimensional form H reads:

V2

ﬁ:
2

+d72, (25)
where H = H/(d?mv?). Additionally, in the presence of axial
symmetry a second constant of motion is the particle toroidal
angular momentum

Dy =1V +T1Ay = vy —|—di_2w7 (26)
where py =pgs/(mRod;va). It remains an open question
whether and under what conditions, additional, approxim-
ate constants of motion exist within the framework of full-
orbit Vlasov description (see [19] and references therein for
a discussion on the existence of a third integral of motion in
axisymmetric potentials). In certain scenarios, it may be per-
tinent to consider adiabatic constants, such as the magnetic
moment p as explored in [20]. It is worth noting that in the
context of the hybrid model and the present analysis, some
assumptions made in [20], such as py ~ 1), can be justified
due to the presence of the significant d; 2 factor, especially in
systems like the magnetosphere. However, in this paper, which
focuses on laboratory plasmas, we will not adopt this assump-
tion. Instead, we will follow the approach outlined in [9] and
[21], considering a distribution function in the form of:

f=exp(—H)g(py)
V2 +v§ +v2
= exp L =z @ é ¢ —di_sz(r,z) 27

g(ps)

or

2 2 —)?
v,;tvZ _ (P¢>2r;/’) _d[‘2<1>(r,z)] 8(ps) -

f=exp

Note that the tildes have been omitted in A and pg for con-
venience. For such a distribution function the kinetic current
density (8) will have only a ¢ component. This is because v, f
and v,f are odd functions with respect to v, and v, respectively,
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while the integration over these variables go from —oo to +o0.
Therefore

Jk = er¢V¢7
and as a result
_ g
Jip xB = 7V¢. (28)

Substituting (19), (20), (24) and (28) into (18) we obtain

A*
—nVo = — ww - fv1+[ Y|V — Jk¢vw —nVo
+”G () Vb, (29)
where [a,b] := (Va x Vb)-V¢. It is now trivial to see that

from the V¢ projection of (29), we obtain

L] =0, ie. I=I(v). (30)
Finally, the V1) projection yields
A +1' () +rZ(r,y) =0, @31

where

Z(r¢) =

% / dvvef —G' (¥) / d’vy.

Equation (31) is a Grad—Shafranov (GS) equation determining
the magnetic field through the flux function 1 in axisymmet-
ric hybrid Vlasov equilibria. Let us now work out the velocity
space integrals in (31). The particle density is

5 —<I>/d2 +oo +0<>
nf/d vf = / /

> ,,»,";,M
[ e T )

dreeld [ (euia)
= f/ dpge @ gpy). (32)
We have shown that ® = In(n%*) + G(v)), therefore
1
dme=GW)/d oo (pp-uri)’ o
n= lr/ dpge 2 g(pg) . (33)

Similarly, for the toroidal component of the kinetic current
density we find

K

_ o | 2 e—C@)/d; ptoo 7M e
Jip =2me GW)/4; |:r/ dpge 22 g(p¢)

too  (pe—v/d)

X /7 _ dpg Te
Therefore, the current density depends on two arbitrary func-
tions, i.e. G(v) and g(p,). The latter function that determ-

ines the ion distribution function, can either be specified
a-priori, together with G(¢)) and then the GS equation (31)

(rgp—v/8)’
212

g(ps) - (34)

can be solved to determine 1), or can be identified by fixing
Jig and G(1). Following the formalism of [9] we can show
that the function Z(r,1) can be derived by a ‘pseudopoten-
tial’ function V(r,+) which takes the form

1

—G(¥) /& [+oo o= /4)° wF
=& (k+1) L/ dp¢e’(l¢ Y )

V(i,r) g (ps)

— & (k+1)n. (35)

We can easily verify that Z =
be written in the familiar form

6 w , thus, the GS equation can

ov
oY

Note that equation (36) is reminiscent of the MHD GS
equation with toroidal flow [22], where an effective pressure
function associated with the thermodynamic pressure and the
plasma flow, appears instead of V(r,1)).

To solve equation (36) we can specify V(1, r) to be a known
mathematical function or it can potentially be inferred by
experimental data for the particle density » or the toroidal cur-
rent density profile. The feasibility of the latter approach will
be explored in future work. Note that the particle density and
the total toroidal current density can be expressed in terms of
V as follows

A*p +1' () + 1 — =0. (36)

v oV

a?(ﬁ_'_l), J¢—7+r%. 37)

Also note that that the electron contribution to J4 is given by

g
Jep = - mG’ () .

(38)
Knowing V enables the solution of the partial differential
equation (36) to determine ¢ and of the integral equation (35)
to determine g(py).

In the appendix A we demonstrate that when the product
VEtH1eGW)/ 4 can be expressed as a power series expansion
of 1, it becomes possible to determine the function g(py) in
terms of Hermite polynomials. The function g(py) is essen-
tially determined upon calculating the coefficients c,, appear-
ing in the expansion (51) of the appendix A. This is done by
solving equation (56) for ¢, after expressing the left hand side
(Ihs) of (56) as a power series expansion in 1. In this work we
consider the special case

k+1
Lﬂ(nvm] SO Z Yy (1) + Vi (1) + V2 ()92, (39)
and deal with two classes of equilibria corresponding to cold
electrons with x =0 and thermal electrons with x ~ 1. We
consider here the quadratic ansatz (39) due to its simplicity
in determining the constants c,, in the expansion (56). While
higher-order terms in ¢ could be included, such an exten-
sion would complicate the analysis, exceeding the scope of the
present study, which aims to showcase the feasibility of solv-
ing the inverse problem via the Hermite polynomial method.
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Another motivation for this choice is that adopting a similar
ansatz for the free function /% (¢)) and assuming G(v)) = 0, res-
ults in a linear GS equation in the cold electron limit, which
is the simpler case with non-monotonic current density pro-
file and can be solved analytically in terms of truncated power
series as done in [23].

By equations (39) and (56) we see that

27 3/2 473/2
V0+V11/J+V2w2:(302ﬂ'3/2+61( d)2 P+ 7 ’(/J2
+edr 2 (P 1), (40)
and therefore the coefficients ¢y, ¢; and ¢, are
_ V() 2 _ & _div,
0= 50 — 20 (r 1) L a=ihk. a=15k. @)

In order for cy,cy,c; to be constants we should select V; =
const. V> = const. and

V()(r):C()er?Vz(}’zfl),

where Cj is a constant. Therefore, the ion distribution function
in both the cold and thermal electron limits reads as follows

F(H,py) = [co +V2eipy + 2 (205 — 2)} . (@)

To ensure the positivity of the distribution function (42) it suf-
fices to require ¢y + ﬂc1p¢ + cz(2p(225 —2) >0, Vpy, which
holds true for

2 2
ci —8c;
4C2

co > , ¢>0.

4. Tokamak equilibria

To fully define the plasma equilibria we further need to specify
the free functions /(¢) and G(%)). In this work we adopt

2
)

P W)= (Iop+ L + Lap?) e v %) (43)

G()=a(—1.) . (44)

Here, Iy, I, 1>, 1, and « are constants, and 1, represents
the value of the flux function 4 at the magnetic axis, corres-
ponding to an elliptic O-point of ) where the magnetic field
is purely toroidal. This particular choice for G(v) is based
on the expectation that the number density should decrease
towards the plasma boundary, (see equation (33)). This choice
also plays a crucial role in generating flow and toroidal current
shear in the edge region of the plasma.

The specific form of the ansatz (43) for I*(¢) is influ-
enced by the structure that V assumes after adopting the forms
given in (39) and (44). Furthermore, this ansatz offers substan-
tial flexibility in shaping various equilibrium profiles although
the examples of equilibria provided later were obtained for
specific values of the free parameters, rather than through a
detailed exploration of the parametric space.

We address the fixed-boundary equilibrium problem within
a tokamak-relevant, D-shaped computational domain denoted
as D. In this context, we solve the GS equation (36) while spe-
cifying V as

V=d2e SO/ Vo (r) + Vip + Var?] (45)

) 1/2
V=2d {e*GW)/df [Vo(r) + Vi + Vﬂﬂ} / ., (46)

for the kK =0 and k = 1 cases, respectively. It should be noted
that it is possible to calculate thermal electron equilibria with
different values of x rather than x=1. This would corres-
pond to assuming a different electron temperature and also the
expression in equation (46) would vary accordingly. However,
k=1 corresponds to a tokamak-relevant temperature, making
it a convenient choice. Another interesting possibility is allow-
ing ~ to depend on the flux function ), resulting in equilibria
with isothermal magnetic surfaces. This will be explored in a
future study. The boundary condition is of Dirichlet type given
by ¥|sp = 0 where 9D is the boundary of a computational
domain D. This corresponds to a closed flux surface embedded
into the plasma rather than the actual plasma boundary as it is
remains unclear how to determine the appropriate conditions
that will produce the desired profile behavior in the outermost
plasma region within the kinetic framework (see also the relev-
ant discussion in [14]). For cold electrons the Grad-Shafranov
equation (36) takes the familiar form

A Y + 11 () + d2e /% [(v1 +2Va1))

G'(¥)
&’

L

— d2Vye /NG () = 0.

(C() — d?Vz + Vi + Vzi/}z):| P
47

Note that a GS equation of similar structure describes axisym-
metric equilibria with incompressible flows of arbitrary dir-
ection, as shown in [24]. In the MHD context the r* term is
associated with the non-parallel component of the flow.

We solve both boundary value problems, corresponding
to k=0 and k=1, using the finite element method, which
is conveniently implemented in Mathematica. The boundary
0D is defined as a polygon with a large number of vertices.
The vertex coordinates can be boundary points extracted by
some parametric formula or by experimental data. The bound-
ary is characterized by an inverse aspect ratio e = 0.32, trian-
gularity § =0.34 and elongation equal to 1.6. The character-
istic values of length, magnetic field and number density used
for unit recovery are, respectively Ry = 6.2m, By =5 T and
ng = 2.1 x 10". The algorithm performs several iterations as
the position of the magnetic axis has to be found because it is
required for determining the function G = a/(¢) — 1,)?, until
the convergence criterion max(|tnew — ola|) < tolis satisfied.
For our calculations we have set tol = 107,

The contours of constant 1) (magnetic surfaces) for both
equilibria are shown in figure 1. These equilibria are calcu-
lated by solving (36) with the ansatz (43) for I?(¢). In the case
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Figure 1. Magnetic surfaces of an equilibrium with cold electrons (blue dashed lines) and an equilibrium with thermal electrons

(red solid lines).

Figure 2. Variation of the flux functions 1 (left) and the z component of the magnetic field (right) along the r axis on the equatorial plane
z=0. The dashed blue lines correspond to the cold electron equilibrium and the red solid lines correspond to thermal electrons.

Jp (Am?)

----- ke for k=0
— &g for k=1
ceeees dpg for k=0
100000 ™ s R LB . e for =1

Figure 3. The toroidal current density profiles for the two equilibrium classes. The total current density profile is displayed in the left panel,
while in the right panel the electron and the ion kinetic contributions are drawn separately.

of cold electrons, the function V is given by (45), while for
thermal electrons, V is specified by (46). The values of the free
parameters in the functions / and V are identical for both cases.
For the specific examples presented here, we have chosen Iy =
05, =107 L=—14,V; =15V, =102 x 10*, a =75,

and n=0.1.

The characteristics of the equilibrium can be deduced
from figures 2—-6, which display variations of various physical
quantities of interest along the r axis on the z =0 plane. Two-
dimensional density plots of the same quantities are presented
in figures 7—14. Notably, the particle density in both equilib-
ria does not vanish at the boundary (figures 5 and 7), implying
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Up (M/s)

Figure 4. The toroidal rotation velocity profile (left) and the corresponding profile of the » component of the electric field on z=0.

3

N

n(m

80000

Pe (Pa)

Figure 5. Particle density profiles for k =0 and x =1 (left panel) and the electron pressure for £ = 1 (right panel).

(Pa)

Py

Figure 6. Variation of the parallel (left panel) and perpendicular (right panel) components of the ion pressure tensor along r axis on z=0

forboth k =0and k= 1.

Figure 7. Two dimensional density plots for the particle densities in
K =0 (left panel) and x =1 (right panel) case.

that this equilibrium model is suitable for describing internal
plasma regions bounded by a closed magnetic surface which
defines the computational domain and does not coincide with
the actual plasma boundary.

@

Jo (AVm?) (k=0

| 350000
250000

300000
200000
25000¢
150000
200000

100000

Figure 8. Variation of J, component on the r — z plane for k =0
(left) and x =1 (right).

Additionally, we observe that the toroidal plasma rotation
velocity profile exhibits a hollow shape with significant flow
shear and radial electric field (E,) in the plasma edge (figures 4,
9, and 10). Such edge sheared flows have been associated
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Up (m/s) (x

r r

Figure 9. The variation of the toroidal rotation velocity u on the
plane r — z, for cold (left) and thermal electrons (right).

|E| (V/m) (k=0) |E| (V/m) (k=1)

Figure 10. The variation of the electric field magnitude |E| on the
plane r — z, for cold (left) and thermal electrons (right).

Figure 11. The parallel component (P) of the ion pressure tensor
for cold (left panel) and thermal (right panel) electrons.

with the reduction of radial turbulent transport and the trans-
ition to high (H) confinement modes in large tokamaks (e.g.
[25, 26]). Moreover, the toroidal current density profile for the
k=1 equilibrium shows a reduction in the central region of
the plasma (figures 3 and 8).

We also examine the parallel and perpendicular compon-
ents of the ion pressure tensor, as presented in figures 11
and 12. The steps for obtaining P and P, can be found in

P, (Pa)(x=1)

P, (Pa)(x=0

Figure 12. The perpendicular component (P ) of the ion pressure
tensor for cold (left panel) and thermal (right panel) electrons.

B (%) (xk=1)

Figure 13. Plasma f calculated using (48) for the case k = 0 (left)
and the case k =1 (right).

Figure 14. The anisotropy function o, calculated by (61) for K =0
(left) and k =1 (right).

appendix B. In figure 6, we provide profiles of these compon-
ents, along with the electron pressure profile in the case of
= 1. Notably, the P component of the ion pressure tensor
forms a pedestal in the thermal electron case. As a con-
sequence, the effective pressure defined as (P + P )/2 also
forms a pedestal due to the P|| contribution.
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----- k=0

k=1

=====-- Maxwellian for k=0

...... Maxwellian for k=1

----- K=0

k=1
-------- Maxwellian for k=0
------ Maxwellian for k=1

]

Figure 15. Variation of the ion distribution function f computed by (42) with v4, at two different locations: at the magnetic axis (left) and at

an edge point with coordinates (r = 1.3,z = 0.0) (right).

In addition to the previously mentioned physical quantities,
we calculate two figures of merit for both cold and thermal
electron equilibria: the plasma 3 and the anisotropy function
o (defined in appendix B, equation (61)). In nondimensional
form the expression for calculating the plasma [ is:

P.+(P)
_ e
B_di BZ )

(48)
where (P):=P, +P,+Pyy with P, P, Py, being the
diagonal components of the pressure tensor (see appendix B).
The presence of the d? factor arises owing to the specific
scaling we have adopted for the normalized pressure in
equations (9). Figures 13 and 14 illustrate that the plasma (3
ranges from approximately 0.5%-1.0% and increases from
the plasma boundary towards the core, while the ion pressure
anisotropy is more pronounced on the low-field side of the
configuration.

We conclude our presentation of equilibrium results with
figure 15, which illustrates the variation of ion distribution
functions as a function of the toroidal particle component
ve, for both k=0 and x =1 cases at two distinct locations:
the magnetic axis (ru,z4;) and an edge point with coordin-
ates (r=1.3,z=10.0). In both cases, the dependence on v,
and v, has been eliminated by integrating the distribution
functions over the v,-v, plane. The two distribution func-
tions are presented alongside the corresponding normalized
Maxwellian distributions foe’vzb, where f( is an appropriate
normalization constant. In both cases, the distributions exhibit
a shift towards positive vy, resulting in finite macroscopic tor-
oidal flows. At the edge point (r = 1.3,z = 0), where the tor-
oidal flow appears to reach a maximum, the distributions signi-
ficantly deviate from the Maxwellian, displaying a bump-on-
tail form. The bump corresponds to ions rotating in the oppos-
ite direction of the macroscopic flow.

5. Summary

In this work, we have presented the axisymmetric equilibrium
formulation of the hybrid Vlasov equilibrium model intro-
duced in [9], featuring massless electrons and kinetic ions.
We derived a general form of the GS equation and outlined a

method for determining ion distribution functions in terms of
Hermite polynomials based on the knowledge of the total and
the electron current density profile. Our formulation allowed
us to solve the equilibrium problem for specific choices of the
arbitrary functions involved in the GS equation. The results
demonstrate the model’s capability to describe plasmas with
geometric and profile characteristics relevant to tokamaks.
Notably, these equilibria exhibit some features reminiscent
of H-mode phenomenology, including strongly sheared edge
flows and significant edge radial electric fields. Building upon
these results, more refined descriptions of plasma equilibria
with kinetic effects stemming from kinetic particle popula-
tions are possible. Thus, future research will focus on improv-
ing the model to incorporate realistic electron temperature dis-
tribution and fluid ion components. An intriguing open ques-
tion is whether this equilibrium model can be derived through
a Hamiltonian energy-Casimir (EC) variational principle, as
explored in [16, 27]. Identifying the complete set of Casimir
invariants of the dynamical system is crucial for such a vari-
ational formulation of the equilibrium problem and for estab-
lishing stability criteria within the Hamiltonian framework.
Note that, in general, there are not enough Casimirs to recover
all the possible classes of equilibria due to rank changing of
the Poisson operator (see [28]). However, instead of the EC
variational principle, one can apply an alternative Hamiltonian
variational method that recovers all equilibria upon utilizing
dynamically accessible variations [28].
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Appendix A. Expansion of g(p,) in terms of
Hermite polynomials

To illustrate that when the product V<+!eG(¥)/ 4 can be
expressed as a power series expansion of 1, it is possible to
determine the function g(py) in terms of Hermite polynomi-
als, we invoke that Hermite polynomials H,, (x) serve as coef-
ficients in the following power series expansion [29]:

ety e 2 x y\"
2N~ g () (L), @
2 <ﬁ)(ﬂ> @

therefore (35) can be written as

Vv wr ) _ 7g /2 ¢
[d%(wl)] Z / dce ™ T (f)
x (%) 2(rC) (50)

where ¢ :=pg/r. As Hermite polynomials form a complete
orthogonal basis we can expand g(r() as

g(rQ) = zm:cmHm <\r/%) :

We now make use of the multiplication theorem for Hermite
polynomials [30]

&1V

Lm/2] .l
_ m=20 (24
S -1) A a2 )
£=0
VyeR, (52)
to write
Lm/2] ,
_ m—20(2 <
g(rﬁ)—; ; n G m —20)1 26 7 (r l) Hm72£<\/§) .

(53)
Substituting (53), the right hand side (rhs) of (50) becomes
Lm/ 2J

en g (P ] o
mzn ;} n! (m— 2@) ( ) &\2r
+oo
_ ¢ ¢
x d¢e=S2H, < Hyoo [ == . (54)
/_oo V2 V2
Further, exploiting the orthogonality condition
+oo
dxH, (x) Hy (x) e = /72" 06 , (55)

we can see that equation (50) with rhs given by (54), becomes
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Appendix B. Calculation of the ion pressure tensor
components

The ion pressure tensor is defined by

P:/d3v(v—u)(v—u)f, (57)

where u is calculated by (7). In our case u = uy gZ; Selecting
the (v,,v,,v4) basis in the velocity space we calculate below
the following diagonal pressure components P,., P, P4. Note
that the non-diagonal components P,; = P4 = P,4, = 0 vanish
owing to the fact that f is an even function of the velocity com-
ponents v,, v,. The diagonal elements are calculated as follows

P, — / dof, (58)
P, = / v, (59)
P¢¢ = /d3v (V¢ — u¢)2f. (60)

An average value of the ion pressure is given by (P)
Tr(Py)/3.

It is evident that P,, = P,, and since the non-diagonal com-
ponents are zero, the ion pressure tensor is gyrotropic and can
be written in the form

P=0BB+P I, ©61)

where

Py —
— 2

g = di T 5

is an anisotropy function. Note that the factor d? appears due to

the specific scaling of the particle velocity adopted in (9). The

parallel and the perpendicular to B components of the pressure

tensor can be calculated by the following relations

P:BB _ P;BB,

B B
_1
~2

P,‘j (51} —

P = (62)

BB
B

BiB;
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