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A B S T R A C T

The phase space of a noncanonical Hamiltonian system is partially inaccessible due to dynamical constraints
(Casimir invariants) arising from the kernel of the Poisson tensor. When an ensemble of noncanonical
Hamiltonian systems is allowed to interact, dissipative processes eventually break the phase space constraints,
resulting in a thermodynamic equilibrium described by a Maxwell–Boltzmann distribution. However, the time
scale required to reach Maxwell–Boltzmann statistics is often much longer than the time scale over which a
given system achieves a state of thermal equilibrium. Examples include diffusion in rigid mechanical systems,
as well as collisionless relaxation in magnetized plasmas and stellar systems, where the interval between
binary Coulomb or gravitational collisions can be longer than the time scale over which stable structures
are self-organized. Here, we focus on self-organizing phenomena over spacetime scales such that particle
interactions respect the noncanonical Hamiltonian structure, but yet act to create a state of thermodynamic
equilibrium. We derive a collision operator for general noncanonical Hamiltonian systems, applicable to fast,
localized interactions. This collision operator depends on the interaction exchanged by colliding particles and
on the Poisson tensor encoding the noncanonical phase space structure, is consistent with entropy growth and
conservation of particle number and energy, preserves the interior Casimir invariants, reduces to the Landau
collision operator in the limit of grazing binary Coulomb collisions in canonical phase space, and exhibits
a metriplectic structure. We further show how thermodynamic equilibria depart from Maxwell–Boltzmann
statistics due to the noncanonical phase space structure, and how self-organization and collisionless relaxation
in magnetized plasmas and stellar systems can be described through the derived collision operator.
1. Introduction

This paper is concerned with the following problem in kinetic
theory. Suppose that the distribution function 𝑓 (𝒛, 𝑡) of a statistical
ensemble with phase space coordinate 𝒛 evolves in time 𝑡 according
to
𝜕𝑓
𝜕𝑡

= −{𝑓,H}∗ +
(

𝜕𝑓
𝜕𝑡

)

coll
, (1)

where the Hamiltonian functional H represents the total energy of
the system, {⋅, ⋅}∗ is a noncanonical Poisson bracket [1,2] for the
field theory, and (𝜕𝑓∕𝜕𝑡)coll denotes a collision term accounting for
the interaction between particles during scattering events. What is the
expression of the collision term (𝜕𝑓∕𝜕𝑡)coll for binary collisions that
occur over short time scales and small spatial scales compared to the
ideal dynamics described by the noncanonical Poisson bracket? Here,
we show that the collision term is given by
(

𝜕𝑓
𝜕𝑡

)

coll
=  (𝑓, 𝑓 )

∗ Corresponding author.
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= 𝜕
𝜕𝒛

⋅
[

𝑓 ⋅ ∫ 𝑓 ′𝛱 ⋅
(

 ′ ⋅
𝜕 log 𝑓 ′

𝜕𝒛′
−  ⋅

𝜕 log 𝑓
𝜕𝒛

)

𝑑𝒛′
]

, (2)

where ‘⋅’ means contraction, 𝛱 is a symmetric covariant 2-tensor (the
interaction tensor), whose form depends on the type of binary inter-
actions, and  denotes the contravariant Poisson 2-tensor (bivector)
associated with the noncanonical Poisson bracket. In this notation,
𝑓 ′ = 𝑓

(

𝒛′, 𝑡
)

and  ′ = 
(

𝒛′
)

.
In order to explain the physical meaning of this result, we start

by recalling the role played by noncanonical Hamiltonian mechan-
ics in the description of dynamical systems. Physical phenomena are
characterized by spacetime scales. These scales impart a dynamical
hierarchy to the degrees of freedom of a system. Depending on the
phenomenon of interest, part of these degrees of freedom may be
redundant, and therefore inessential to the description of the evolution
of the system. For example, the dynamics of a rigid body is conveniently
described by the three components of angular momentum, while mo-
menta and positions of the microscopic constituents of the rigid body
can be removed from the mathematical formulation of the equations
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of motion. Noncanonical Hamiltonian mechanics represents the math-
ematical structure arising from such process of reduction. Notice that
this mechanical framework is not the result of a change of coordinates
(in the rigid body example, the phase space is three-dimensional, and
therefore it cannot be spanned by paired canonical variables), but the
intrinsic structure of reduced phase spaces. It is therefore legitimate
to ask what is the statistical behavior of an ensemble of noncanonical
Hamiltonian systems, such as an ensemble of interacting rigid bodies.
Under suitable working assumption on the nature of the interaction
driving dissipation, this question can be reformulated as the mathemat-
ical problem of determining the collision operator that appears within
the Boltzmann transport equation when, however, the underlying phase
space structure is noncanonical. This is the theoretical issue addressed
in this work.

The physical motivation behind this study stems from the obser-
vation that certain physical systems, such as magnetized plasmas in
the laboratory [3] or in astrophysical environments (e.g. accretion
disks or planetary radiations belts [4]) or systems of gravitating bodies
(e.g. stars in the galactic disk [5]), often self-organize into equilibria
over time scales that are (𝑖) insufficient to break the phase space
obstructions represented by Casimir invariants or (𝑖𝑖) sensibly shorter
than the typical time interval (collision time) between two scattering
events. In fact, one speaks of self-organization [6] and collisionless re-
laxation [7,8]. Here, self-organization refers to the creation of ordered
structures in thermodynamically closed systems subject to constraints,
while collisionless relaxation describes an entropy increasing process
in which binary collisions between particles populating a statistical
ensemble do not contribute to the formation of equilibria. In this
context, a particle is an elementary constituent of a statistical ensem-
ble, such as a charged particle, a rigid body, a star, and so on. It
should also be emphasized that self-organization and collisionless re-
laxation are not mutually exclusive, nor mutually inclusive. These self-
organizing/relaxation phenomena raise two fundamental questions:
(𝑖) since many of these systems can be effectively modeled as ther-
modynamically closed, why are non-trivial structures formed during
relaxation and how are they consistent with entropy growth? (𝑖𝑖) if
binary collisions are absent, what is the relaxation mechanism enabling
the creation of a self-organized equilibrium state?

The results reported in this work suggest that the answer to these
questions lies in the noncanonical Hamiltonian structure of the phase
space associated with microscopic dynamics. Indeed, the constrained
nature or total absence of binary collisions ensures that the non-
canonical structure of the equations of motion is preserved during
the relaxation process, and the resulting thermal equilibria turn out
to depend explicitly on the geometry of noncanonical phase space.
This is, we argue, the mechanism by which self-organized structures
can be created while maximizing entropy. It is only over longer time
scales over which the usual binary collisions become dominant that the
noncanonical structure is destroyed, the constraints removed, and the
usual Maxwell–Boltzmann statistics is recovered.

Furthermore, the collisionless relaxation mechanism can be under-
stood in terms of collective fluctuations associated with the ensemble
averaged interaction potential energy felt by the particles, in the same
way mean electromagnetic and gravitational fields determine the evo-
lution of the distribution function in the Vlasov–Maxwell and Vlasov–
Poisson models [2,9,10]. This relaxation process can be modeled as a
binary collision process between localized ‘clusters’ of a large number
of particles because the cluster collision frequency is a linear function
of the particles contained in a cluster, and therefore becomes sensibly
larger than the usual collision frequency. Mathematically, the process
can be described in terms of a collision operator analogous to the
Landau collision operator [11–13] for grazing Coulomb collisions in
canonical phase space. In this setting, the particle distribution function
𝑓 is replaced by the distribution function of particle clusters, 𝑓 , and
the kinetic equation satisfied by 𝑓 effectively generalizes the Landau

̃

2

kinetic equation to noncanonical phase spaces. We may identity 𝑓 and
𝑓 with the notions of coarse-grained distribution function and fine-
grained distribution function that often occur in statistical mechanics.
We also remark that the notion of particle clusters adopted in this
paper to describe collisionless relaxation is conceptually analogous to
the particle clumps occurring in the context of phase space density
granulation theory of plasmas (see e.g. [14]), and shares similarities
with the quasiparticles arising in the dressed test particle model [15],
but it is not limited to the Coulomb interaction. Furthermore, we
stress again that the applicability of the present theory is not limited
to collisionless relaxation, because it deals with the broader issue of
the description of dissipation and collisions in general noncanonical
Hamiltonian systems.

There are two other aspects that we must discuss before constructing
the collision operator in noncanonical phase space: the context of this
work with respect to the wider framework of statistical mechanics
and kinetic theory, and the methodology used to tackle the theoretical
problem. First, we remark that the present work is not concerned with
the identification of new types of statistics, such as those associated
with non-additive entropies [16,17] or those arising from indistin-
guishability of particles and exclusion principles as in the Lynden
theory [5] or Bose–Einstein and Fermi–Dirac statistics, but rather with
the problem of how noncanonical phase space may alter the usual
understanding of ergodicity and differential entropy. More precisely,
due to the presence of constraints (the Casimir invariants of the Poisson
bracket [18,19], which represent constants of motion that are inde-
pendent of the Hamiltonian (energy) of the system) and the nontrivial
nature of the invariant measure (preserved phase space measure) in a
noncanonical Hamiltonian system, the accessible regions of the phase
space are restricted, and the phase space metric is distorted with respect
to the usual configuration space metric. These obstructions restrict the
ergodicity [20] of noncanonical Hamiltonian systems to submanifolds
corresponding to level sets of the Casimir invariants, and affect the
definition of Shannon’s differential entropy 𝑆 = − ∫ 𝑓 log 𝑓 𝑑𝛺 [21],

hich is a non-covariant functional of the distribution function [22,
3]. We remark here that the key role played by Casimir invariants
n shaping ordered structures in self-organizing phenomena has been
ointed out in several contexts, including magnetized plasmas [6],
ollisionless systems with long-range interactions [5,24], and two-
imensional ideal fluid flows [25,26]. In a field theory arising from a
icroscopic dynamical system Casimir invariants can be classified into

nterior (or induced) Casimir invariants and outer Casimir invariants.
nterior Casimir invariants are inherited from the kernel of the Poisson
ensor associated with microscopic dynamics by the Poisson bracket of
he corresponding field theory. On the other hand, an outer Casimir
nvariant is a property of the Poisson bracket of the field theory, such
s the total particle number in the Vlasov–Poisson model. We will see
hat in the kinetic theory developed in the present paper a critical role
s played by the interior Casimir invariants, which are responsible for
eviation from Maxwell–Boltzmann statistics.

With regard to the proper notion of entropy in noncanonical Hamil-
onian systems, we note that the argument of the logarithm appearing
n the definition of 𝑆, which must be a pure probability, depends on the
hoice of the volume element 𝑑𝛺 with respect to which the probability
ensity 𝑓 is defined. Hence, the functional 𝑆 represents a complete
nformation measure only if the volume element 𝑑𝛺 is invariant when
ransported by the dynamical flow.

The starting point of the construction developed in this work is the
BGKY hierarchy of equations [12] (see [27] for the Hamiltonian struc-
ure) for the 𝑖-point distribution function 𝑓𝑖

(

𝒛1,… , 𝒛𝑖, 𝑡
)

of a system
consisting of 𝑁 particles with phase space positions 𝒛𝑖, 𝑖 = 1,… , 𝑁 , of

hich we report the first equation
𝜕𝑓1
𝜕𝑡

(𝒛, 𝑡) +
{

𝑓1,𝐻1 +𝛷1
[

𝑓1
]}

(𝒛, 𝑡)

= ∫
{

𝑓1 (𝒛, 𝑡) 𝑓1
(

𝒛′, 𝑡
)

− 𝑓2
(

𝒛, 𝒛′, 𝑡
)

, 𝑉
(

𝒛, 𝒛′
)}

𝑑𝒛′, (3)
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where 𝐻1 (𝒛) is the energy of an isolated particle, 𝛷1
[

𝑓1
]

= ∫ 𝑉 𝑓 ′
1 𝑑𝒛

′

the ensemble averaged interaction energy, 𝑉
(

𝒛, 𝒛′
)

the potential en-
ergy of binary interactions (which is assumed to be symmetric in its
arguments), and {⋅, ⋅} denotes the one-particle Poisson bracket. The
elationship between the Poisson bracket of the field theory {⋅, ⋅}∗
nd the one-particle Poisson bracket {⋅, ⋅} is discussed in Section 7.
hen binary collisions between particles are negligible (in the sense

hat their occurrence is rare compared to the characteristic time scale
nder consideration) the term on the right-hand side of Eq. (3) can
e neglected, because the probability 𝑓2

(

𝒛, 𝒛′, 𝑡
)

𝑑𝒛𝑑𝒛′ of finding two
articles in the phase space volume elements centered at 𝒛 and 𝒛′ can
e approximated in terms of the product 𝑓1 (𝒛, 𝑡) 𝑓 ′

1
(

𝒛′, 𝑡
)

𝑑𝒛𝑑𝒛′ due to
he small correlation of the events. In this case, particle interactions
re mediated solely by the ensemble averaged potential energy 𝛷1, and
ne recovers the Vlasov model (on this point, see also [8,28] where
he construction of effective collision operators for the Vlasov equation
n canonical phase space is discussed). Collision operators can then
e introduced by a suitable closure assumption relating the 2-point
istribution function to the 1-point distribution function in the term
n the right-hand side of Eq. (3).

However, as we will see in sections 2 and 3, the construction
f the collision operator becomes a nontrivial theoretical challenge
hen the Poisson bracket {⋅, ⋅} is noncanonical because its properties
ill not only depend on the nature of the particle interaction, but
lso on the geometry of the phase space. Furthermore, the notions of
article cluster and cluster collisions are required to model collisionless
elaxation, since the term on the right-hand side of (3) is negligible in
his setting. Indeed, suppose that we construct the BBGKY hierarchy for
system of 𝑁cl = 𝑁∕𝑁 ′ clusters of particles with 𝑖-point distribution

unction 𝑓𝑖
(

𝒛1,… , 𝒛𝑖, 𝑡
)

. If the number of particles 𝑁 ′ contained in each
luster is high enough, the correlation 𝑓1 (𝒛, 𝑡) 𝑓1

(

𝒛′, 𝑡
)

− 𝑓2
(

𝒛, 𝒛′, 𝑡
)

is
no longer negligible because the larger phase space volume occupied by
each cluster increases the likelihood of binary cluster collisions. Then,
a kinetic model of the collision process can be obtained by closing the
hierarchy equations in terms of a collision operator for the distribution
𝑓1, which is one of the tasks we undertake in this study.

With regard to the derivation of the collision operator, we em-
phasize that in the context of constrained or collisionless relaxation
the noncanonical Hamiltonian structure encapsulated in the Poisson
bracket survives during the relaxation process due to the constrained
or negligible nature of usual collisions, and therefore appears explicitly
in the expression of the collision operator through the Poisson tensor 
as shown in Eq. (2). We also note that  always appears multiplied by
 ′ in the collision operator, a behavior that is reminiscent but different
from the case of so-called double brackets [29–32] used as a practical
method to compute equilibria in noncanonical Hamiltonian systems.
Instead, it will be shown that the kinetic equation satisfied by the
distribution function possesses a metriplectic structure [33,34], i.e. an
algebraic structure associated with dissipative systems that is consistent
with the first and second laws of thermodynamics. This algebraic
structure has been found in several physical systems spanning different
phenomena, such as dissipative magnetohydrodynamics [35,36] or the
Fokker–Planck equation [37]. Due to the generality of the dynamical
systems examined, this work suggests that the metriplectic bracket
characterizes the phase space of dissipative systems in the same way
the Poisson structure characterizes the phase space of ideal systems.

We remark that although collisionless relaxation represents one
of the physical motivations, the present theory applies to noncanon-
ical Hamiltonian systems in general. On the other hand, collisionless
or weakly collisional systems cannot be necessarily described within
the present framework, nor they always exhibit stable structures (see
e.g. [38,39]). Indeed, the range of validity of the developed theory
depends on the nature of the collision process, which must be fast
and spatially confined with respect to the spacetime scales associated
with the underlying noncanonical Hamiltonian structure. It is also
3

worth mentioning that the problem examined here is conceptually f
different from the derivation of the collision operator in gyrokinetic
theory [40,41], where the expression of the cyclotron angle averaged
Landau collision operator is sought in terms of the reduced gyrokinetic
phase space variables. This task is difficult because standard colli-
sion operators are not consistent with the Hamiltonian structure of
guiding center/gyrokinetic dynamics. On the other hand, the problem
we examine in this paper is different, in the sense that we look for
collision operators that ‘respect’ the Hamiltonian structure of particle
dynamics (this is exemplified by the fact that the Poisson tensor enters
the collision operator explicitly). For this reason, the collision operators
resulting from the present theory do not necessarily coincide with
the standard ones, but include a larger family of dissipative processes
that extend to noncanonical phase spaces. Nevertheless, the generality
of the approach developed in this work may provide useful insight
into the description of collision processes within gyrokinetic theory.
Indeed, there is no a priori obstacle to apply the formalism developed
here to build a collision operator for gyrokinetics or guiding center
Vlasov–Maxwell theory.

The present paper is organized as follows. In Section 2, we describe
the mechanical setting of collisions in noncanonical phase space. In
Section 3, we derive the collision operator in noncanonical phase
space by expanding a collision integral in powers of the scattering
displacements experienced by the colliding particles. The procedure is
conceptually analogous to the one used to obtain the Landau collision
operator from the Boltzmann collision integral. In Section 4, we first
show that the derived collision operator satisfies conservation of total
particle number, energy (unlike double brackets), and Casimir invari-
ants. Then, we prove an H-theorem, from which we obtain the form of
thermodynamic equilibria. In Section 5, the application of the theory
to self-organization in constrained mechanical systems and collisionless
magnetized plasmas and stellar systems is discussed. In Section 6, we
show that the derived collision operator reduces to the Landau collision
operator in the limit of grazing Coulomb collisions in canonical phase
space. In Section 7, we exhibit the metriplectic bracket of the derived
kinetic equation. Concluding remarks are given in Section 8.

2. Binary interactions in noncanonical phase space

We begin by considering a noncanonical Hamiltonian system de-
scribed by the equations of motion

𝒛̇ =  𝜕𝒛𝐻 =  𝑖𝑗 𝜕𝐻
𝜕𝑧𝑗

𝜕𝑖. (4)

In this notation 𝒛 =
(

𝑧1,… , 𝑧𝑛
)

are coordinates spanning an
𝑛-dimensional domain 𝛺 ⊆ R𝑛,  ∈

⋀2 𝑇𝛺 a Poisson 2-tensor with
components  𝑖𝑗 = − 𝑗𝑖, 𝑖, 𝑗 = 1,… , 𝑛, 𝐻 = 𝐻 (𝒛) the Hamiltonian
unction, 𝜕𝑖 the tangent vector in the 𝑧𝑖 direction, and 𝑡 ∈ [0,∞) the
ime variable such that 𝒛̇ = 𝑑𝒛∕𝑑𝑡. Furthermore, we have simplified the
otation by omitting the contraction symbol in  ⋅𝜕𝒛𝐻 . This convention
ill often be used in the rest of the paper.

It is convenient to regard Eq. (4) as the equations of motion of
‘particle’ with energy 𝐻 , so that the notion of collisions among

articles is analogous to the familiar one encountered in the settings of
he Boltzmann or Landau collision operators. It should be emphasized
owever that the kind of collisions that will be considered in this
tudy may be essentially different from elastic scatterings between
airs of real particles. Indeed, the colliding particles may represent
ore general interacting systems, such as two clusters of real charged
articles interacting with each other via the electromagnetic force.
urthermore, interactions will not be restricted to scatterings in velocity
pace.

For the purpose of the present paper we will assume that collisions
ccur between two ensembles consisting of the same type of particles,
.g. electrons colliding with electrons. This hypothesis greatly simplifies
he algebra of the expansion of the collision integral, but is not essential

or the following theory to hold (more details are given at the end of
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Section 3). Now consider two particles with coordinates 𝒛1 and 𝒛2 and
nergies 𝐻1 = 𝐻

(

𝒛1
)

and 𝐻2 = 𝐻
(

𝒛2
)

respectively. Let 𝑉 = 𝑉
(

𝒛1, 𝒛2
)

enote the energy of the interaction between them. The energies of the
nteracting particles therefore read as

1 = 𝐻1 + 𝑉 , 2 = 𝐻2 + 𝑉 , (5)

hile the respective equations of motion accounting for the interaction
re

̇ 1 = 1𝜕𝒛11, 𝒛̇2 = 2𝜕𝒛22. (6)

ere, 1 = 
(

𝒛1
)

and 2 = 
(

𝒛2
)

. Notice that in these equations
the two particles share the same phase space structure through the
same Poisson tensor  . However, different Poisson tensors arise if the
colliding species are different. Next, observe that the energies 1 and
2 obey
𝑑1
𝑑𝑡

= 𝒛̇1 ⋅ 𝜕𝒛11 + 𝒛̇2 ⋅ 𝜕𝒛21 = 2𝜕𝒛2𝐻2 ⋅ 𝜕𝒛2𝑉 ,

𝑑2
𝑑𝑡

= 𝒛̇1 ⋅ 𝜕𝒛12 + 𝒛̇2 ⋅ 𝜕𝒛22 = 1𝜕𝒛1𝐻1 ⋅ 𝜕𝒛1𝑉 . (7)

n the other hand, the total energy of the two-particle system

12 = 𝐻1 + 𝑉 +𝐻2, (8)

atisfies
𝑑12
𝑑𝑡

=
𝑑1
𝑑𝑡

+
𝑑𝐻2
𝑑𝑡

= 2𝜕𝒛2𝐻2 ⋅ 𝜕𝒛2𝑉 + 2𝜕𝒛2𝑉 ⋅ 𝜕𝒛2𝐻2 = 0, (9)

where we used the antisymmetry of  . Note that 𝑉 does not need to
satisfy 𝜕𝒛1𝑉 = −𝜕𝒛2𝑉 for (9) to hold.

Further assumptions are needed on the nature of the interaction
described by 𝑉 for the evaluation of the collision operator that will
be carried out in the next section. Let

𝐿 ∼  𝑖𝑗

𝜕 𝑖𝑗

𝜕𝑧𝑘

∼ 𝐻
𝜕𝐻
𝜕𝑧𝑗

, 𝑇 ∼ 𝐿
 𝑖𝑗 𝜕𝐻

𝜕𝑧𝑗

, (10)

denote the spatial and time scales associated with the Poisson tensor 
and the Hamiltonian 𝐻 . Similarly, let

𝓁𝑐 ∼
𝑉
𝜕𝑉
𝜕𝑧𝑗

, 𝜏𝑐 ∼
𝓁𝑐

 𝑖𝑗 𝜕𝑉
𝜕𝑧𝑗

, (11)

enote the spatial and time scales of the collision process. In the
ollowing, we assume that collisions involve small spacetime scales
ccording to
𝓁𝑐
𝐿

≪ 1,
𝜏𝑐
𝑇

≪ 1. (12)

We remark that in the setting of the Landau collision operator for
Coulomb collisions within a plasma, the scale length 𝓁𝑐 is essentially
the Debye length 𝜆𝐷, while the time scale 𝜏𝑐 can be estimated through
the ratio 𝜆𝐷∕

√

𝑘𝐵𝑇 ∕𝑚, with 𝑇 and 𝑚 the plasma temperature and
charged particle mass respectively.

In addition, we restrict our attention to interaction energies 𝑉 that
result in elastic scatterings, i.e. collision events that preserve the total
energy of the involved particles prior to the interaction,

𝐸 = 𝐻1 +𝛷1 +𝐻2 +𝛷2, (13)

where we have introduced the ensemble averaged interaction energies

𝛷1 = 𝛷1
(

𝒛1, 𝑡
)

= ∫𝛺
𝑓2

(

𝒛2, 𝑡
)

𝑉
(

𝒛1, 𝒛2
)

𝑑𝒛2,

𝛷2 = 𝛷2
(

𝒛2, 𝑡
)

= ∫𝛺
𝑓1

(

𝒛1, 𝑡
)

𝑉
(

𝒛1, 𝒛2
)

𝑑𝒛1. (14)

Here, 𝑓1
(

𝒛1, 𝑡
)

and 𝑓2
(

𝒛2, 𝑡
)

denote the probability density functions
(distribution functions) of the colliding ensembles defined with respect
to the phase space measures 𝑑𝒛1 and 𝑑𝒛2 respectively. Of course, if
collisions occur between particles belonging to the same ensemble with
probability density function 𝑓 𝒛, 𝑡 , one has 𝑓

(

𝒛 , 𝑡
)

= 𝑓
(

𝒛 , 𝑡
)

and
4

( ) 1 1 1 𝛿
𝑓2
(

𝒛2, 𝑡
)

= 𝑓
(

𝒛2, 𝑡
)

. We also remark that 𝛷1 represents the interaction
energy of the first colliding particle with all particles belonging to the
other ensemble, excluding the second colliding particle (it is assumed
that, due to the large number of particles populating each statistical
ensemble, the subtraction of a particle leaves the corresponding distri-
bution function essentially unchanged). A similar interpretation applies
to 𝛷2. Differentiating (13) with respect to time, one obtains

𝑑𝐸
𝑑𝑡

=𝜕𝒛1
(

𝐻1 +𝛷1
)

⋅ 𝒛̇1 + 𝜕𝒛2
(

𝐻2 +𝛷2
)

⋅ 𝒛̇2

=𝜕𝒛1
(

𝐻1 +𝛷1
)

⋅ 1𝜕𝒛1 (𝐸 + 𝑉 ) + 𝜕𝒛2
(

𝐻2 +𝛷2
)

⋅ 2𝜕𝒛2 (𝐸 + 𝑉 ) .

(15)

Here, we used the fact that the equations of motion can be written
as 𝒛̇1 = 1𝜕𝒛1 (𝐸 + 𝑉 ) and 𝒛̇2 = 2𝜕𝒛2 (𝐸 + 𝑉 ). The rate of change
(15) therefore vanishes provided that the following elastic scattering
condition is satisfied:

𝜕𝒛1
(

𝐻1 +𝛷1
)

⋅ 1𝜕𝒛1𝑉 + 𝜕𝒛2
(

𝐻2 +𝛷2
)

⋅ 2𝜕𝒛2𝑉 = 0. (16)

e further assume the following symmetry condition for the potential
nergy 𝑉 ,
𝜕𝑉
𝜕𝒛1

= − 𝜕𝑉
𝜕𝒛2

, (17)

so that the elastic scattering condition (16) reduces to
[

1𝜕𝒛1
(

𝐻1 +𝛷1
)

− 2𝜕𝒛2
(

𝐻2 +𝛷2
)

]

⋅ 𝜕𝒛1𝑉 = 0. (18)

ere, it should be noted that 𝛷1 and 𝛷2 depend on the distribution
unctions. However, since 𝑉 usually appears as a function of spatial
oordinates, and the Poisson tensor links spatial coordinates to mo-
entum coordinates, terms involving 𝛷1 and 𝛷2 are expected to vanish

in Eq. (18).
The condition (17) has the following interpretation: in a physi-

cal process the forces exchanged by the particles must balance each
other. These forces correspond to the gradient of the potential 𝑉 in
configuration space: the interaction force acting on a particle at 𝒛1 is
𝑭 1 = −𝜕𝒒1𝑉 = − 𝜕𝑉

𝜕𝑧𝑖1

𝜕𝑧𝑖1
𝜕𝒒1

. Newton’s third law therefore reads

1 + 𝑭 2 = − 𝜕𝑉
𝜕𝑧𝑖1

𝜕𝑧𝑖1
𝜕𝒒1

− 𝜕𝑉
𝜕𝑧𝑖2

𝜕𝑧𝑖2
𝜕𝒒2

= 𝟎. (19)

owever, on the small scale 𝓁𝑐 of the interaction 𝜕𝒒1𝑧
𝑖
1 ≈ 𝜕𝒒2𝑧

𝑖
2, leading

o (17).
As an example, in the case of Coulomb scatterings among charged

articles, one has 𝒛 = (𝒗, 𝒒) where 𝒗 = 𝒒̇ is the particle velocity and
the particle position, 𝐻1 = 𝑚𝒗21∕2, 𝛷1 = 𝛷1

(

𝒒1
)

, 𝐻2 = 𝑚𝒗22∕2,
2 = 𝛷2

(

𝒒2
)

, 𝑉 = 𝑉
(

|

|

𝒒1 − 𝒒2||
)

, 𝜕𝒒1𝑉 = −𝜕𝒒2𝑉 , with
(

𝑚𝒗1, 𝒒1
)

and
𝑚𝒗2, 𝒒2

)

canonical variables and 𝑚 the particle mass. It follows that
he elastic scattering condition (18) becomes

𝒗1 − 𝒗2
)

⋅ 𝜕𝒒1𝑉 = 0, (20)

hich expresses the conservation of the modulus of the relative ve-
ocity |

|

𝒗1 − 𝒗2|| during a binary Coulomb scattering. In summary, the
amiltonian 𝐻 , the Poisson tensor  , and the interaction energy 𝑉
ust be chosen so that the conditions (17) and (18) are satisfied for

he theory developed in the present paper to hold. Observe that (17)
mplies 𝑉 = 𝑉

(

𝒛1 − 𝒛2
)

, as one can verify through the change of
ariables

(

𝒛1, 𝒛2
)

→
(

𝒛1 − 𝒛2, 𝒛1 + 𝒛2
)

∕2.
Returning to the general case, we observe that, due to the spatially

ocalized nature of the interaction (the energies 𝐻1 + 𝛷1 and 𝐻2 + 𝛷2
nd the Poisson tensors 1 and 2 are effectively constant over the
patial scale of the collision 𝓁𝑐 thanks to the first ordering hypothesis
n (12)), the shortness of the collision (the second ordering hypothesis
n (12)), and the symmetry of the interaction energy (17), the changes
n the phase space positions 𝒛1 and 𝒛2 due to a collision event can be
pproximated as
𝒛1 ≈ 𝜏𝑐1𝜕𝒛1𝑉 ≈ −𝜏𝑐2𝜕𝒛2𝑉 = −𝛿𝒛2. (21)
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Hence, the total displacement vanishes, i.e.

𝛿𝒛1 + 𝛿𝒛2 ≈ 𝟎. (22)

We will see that the property (22) enables a construction analogous to
that of the Landau collision operator by simplifying the expansion of
the collision integral in powers of 𝛿𝒛1 and 𝛿𝒛2.

The last ingredient needed to evaluate the collision operator is to
demand that the coordinate system 𝒛 =

(

𝑧1,… , 𝑧𝑛
)

defines an invariant
easure, that is

𝒛̇𝑑𝒛 = 𝜕
𝜕𝑧𝑖

(

 𝑖𝑗 𝜕𝐻
𝜕𝑧𝑗

)

𝑑𝒛 = 0 ∀𝐻, (23)

where L denotes the Lie-derivative and 𝑑𝒛 = 𝑑𝑧1...𝑑𝑧𝑛 the phase space
measure. Since  is antisymmetric and 𝐻 is arbitrary, Eq. (23) is
equivalent to demanding that the column of  are divergence-free,
𝜕 𝑖𝑗

𝜕𝑧𝑗
= 0, 𝑖 = 1,… , 𝑛. (24)

n antisymmetric matrix  (not necessarily a Poisson tensor) satisfying
24) is called measure preserving. Eq. (23) deserves further clarifi-
ation. First, we recall that in a canonical Hamiltonian system with
𝑚 canonical coordinates (𝒑, 𝒒) =

(

𝑝1,… , 𝑝𝑚, 𝑞1,… , 𝑞𝑚
)

and canonical
oisson tensor given by

𝑐 =
[

𝟎𝑚 −𝑰𝑚
𝑰𝑚 𝟎𝑚

]

, (25)

here 𝟎𝑚 and 𝑰𝑚 are the 𝑚-dimensional null and identity matri-
es, Eq. (23) is identically satisfied for any choice of the Hamilto-
ian function 𝐻 because 𝑐 is constant and antisymmetric. Next,
bserve that for a general noncanonical Hamiltonian system with
oisson tensor  , the existence of an invariant measure 𝑑𝒛 satisfying
23) is guaranteed locally by the Lie–Darboux theorem [42,43]. More
recisely, for a sufficiently regular  of dimension 𝑛, one can find
small neighborhood 𝑈 ⊆ 𝛺 and a local system of coordinates

𝑝1,… , 𝑝𝑚, 𝑞1,… , 𝑞𝑚, 𝐶1,… , 𝐶𝑠), with 2𝑚 = 𝑛 − 𝑠 the rank of  in 𝑈 ,
uch that in these coordinates the matrix representation of  is given
y

=
⎡

⎢

⎢

⎣

𝟎𝑚 −𝑰𝑚 𝟎𝑚𝑠
𝑰𝑚 𝟎𝑚 𝟎𝑚𝑠
𝟎𝑠𝑚 𝟎𝑠𝑚 𝟎𝑠

⎤

⎥

⎥

⎦

, (26)

here 𝟎𝑚𝑠 is the null matrix with 𝑚 rows and 𝑠 columns. It readily
ollows that in such case an invariant measure satisfying (23) in the
eighborhood 𝑈 can be chosen as

𝒛 = 𝑑𝑝1...𝑑𝑝𝑚𝑑𝑞1...𝑑𝑞𝑚𝑑𝐶1...𝑑𝐶𝑠. (27)

t is worth emphasizing that the local coordinates (𝒑, 𝒒) play the role
f the usual canonical pairs, while the coordinates 𝑪 =

(

𝐶1,… , 𝐶𝑠)

orrespond to 𝑠 constants of motion called Casimir invariants that hold
egardless of the specific form of 𝐻 . Indeed, they belong to the kernel
f the Poisson tensor, so that

̇ 𝑎 = 𝜕𝐶𝑎

𝜕𝑧𝑖
 𝑖𝑗 𝜕𝐻

𝜕𝑧𝑗
= 0 ∀𝐻, 𝑎 = 1,… , 𝑠. (28)

In the following we shall assume that the coordinate system 𝒛 is
an invariant measure in the sense of Eq. (23) in the whole volume
𝛺. In practice, this means that the Poisson tensor  satisfies Eq. (24).
The existence of such Hamiltonian independent invariant measure is
essential for the formulation of statistical mechanics because it implies
that collisions, which are modeled by the interaction energy 𝑉 , do not
alter the preserved phase space volume 𝑑𝒛 (to see this, recall that the
equations of motion accounting for the interaction are given by (6)). We
will see that this fact is crucial for the definition of differential entropy

𝑆 [𝑓 ] = −∫𝛺
𝑓 log 𝑓 𝑑𝒛, (29)

where 𝑓 (𝒛, 𝑡) denotes the probability density function with respect to
5

the measure 𝑑𝒛, because the functional 𝑆 is not covariant (it depends
on the chosen coordinate system). In particular, performing a change
of coordinates 𝒛 → 𝒚 such that 𝑑𝒛 = 𝐽 𝑑𝒚, with 𝐽 the Jacobian
determinant of the transformation, shows that

𝑆 [𝑓 ] = −∫𝛺
𝑔 log

( 𝑔
𝐽

)

𝑑𝒚 = 𝑆 [𝑔] + ∫𝛺
𝑓 log 𝐽 𝑑𝒛 ≠ 𝑆 [𝑔] , (30)

here 𝑔 (𝒚) denotes the probability density function with respect to the
easure 𝑑𝒚, i.e. 𝑓𝑑𝒛 = 𝑔𝑑𝒚.

. Collision operator in noncanonical phase space

We are now ready to construct the collision operator for the non-
anonical Hamiltonian system described in the previous section. Let

denote the probability density function (distribution function) of a
article species defined with respect to the invariant measure 𝑑𝒛. In the
bsence of interactions, the conservation of probability

(

𝜕𝑡 + L𝒛̇
)

𝑓𝑑𝒛 =
0, with 𝒛̇ given by (4), implies that the rate of change in 𝑓 obeys
𝜕𝑓
𝜕𝑡

= − 𝜕
𝜕𝑧𝑖

(

 𝑖𝑗 𝜕𝐻
𝜕𝑧𝑗

𝑓
)

= −
𝜕𝑓
𝜕𝑧𝑖

 𝑖𝑗 𝜕𝐻
𝜕𝑧𝑗

= −{𝑓,𝐻} , (31)

here we used Eq. (24) and introduced the Poisson bracket {⋅, ⋅} acting
n pairs of functions 𝑓, 𝑔 according to

𝑓, 𝑔} =
𝜕𝑓
𝜕𝑧𝑖

 𝑖𝑗 𝜕𝑔
𝜕𝑧𝑗

. (32)

ow suppose that an ensemble of particles with distribution 𝑓1
(

𝒛1, 𝑡
)

is
llowed to interact with a second ensemble with distribution 𝑓2

(

𝒛2, 𝑡
)

.
he respective evolution equations read
𝜕𝑓1
𝜕𝑡

= −
{

𝑓1,𝐻1 +𝛷1
}

1 + 
(

𝑓1, 𝑓2
)

, (33a)
𝜕𝑓2
𝜕𝑡

= −
{

𝑓2,𝐻2 +𝛷2
}

2 + 
(

𝑓2, 𝑓1
)

. (33b)

Here, {𝑓, 𝑔}𝛼 = 𝜕𝑓
𝜕𝑧𝑖 

𝑖𝑗
𝛼

𝜕𝑔
𝜕𝑧𝑗 , 𝛼 = 1, 2, while 

(

𝑓1, 𝑓2
)

is the collision
operator measuring the rate of change in 𝑓1 due to collisions with the
ensemble with distribution 𝑓2. Our task is thus to evaluate  when
the interaction driving collisions is given by the interaction energy 𝑉
introduced above. We emphasize that the ensemble averaged inter-
action energies 𝛷1 and 𝛷2 and the collision operators 

(

𝑓1, 𝑓2
)

and

(

𝑓2, 𝑓1
)

represent distinct contributions to the rate of change in the
distributions functions 𝑓1 and 𝑓2. Indeed, the former terms reflect the
average modification of the particles energies caused by the presence
of interactions, while the collision operators arise from the statistical
correlation between 𝑓1 and 𝑓2, i.e. the non-vanishing of the difference
𝑓1

(

𝒛1, 𝑡
)

𝑓2
(

𝒛2, 𝑡
)

− 𝑓12
(

𝒛1, 𝒛2, 𝑡
)

, where 𝑓12 denotes the distribution
function of the combined ensemble (recall Eq. (3) and see Ref. [12,27]
on this point). Neglecting such correlation is the working hypothesis
leading to the Vlasov–Maxwell model [2,9].

As usual, we assume that binary collisions are the largest contri-
bution to . Nevertheless, we stress again that such binary scatterings
do not need to take place between two real particles, but they may
represent a binary interaction between more general systems, such as
two clusters of charged particles. Assuming that the colliding particles
are originally located at 𝒛1 and 𝒛2 respectively, we denote with 𝒛′1 and
𝒛′2 the respective phase space positions after a collision event. The rate
at which particles of the ensemble 𝑓1 leave 𝒛1 due to collisions with
particles of the second ensemble 𝑓2 to reach some new position 𝒛′1 can
be expressed as

−∫ 
(

𝒛1, 𝒛2; 𝒛′1, 𝒛
′
2
)

𝑓1
(

𝒛1, 𝑡
)

𝑓2
(

𝒛2, 𝑡
)

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2, (34)

where the range of integration has been omitted to simplify the no-
tation. Such convention will also be adopted in the rest of the paper.
The quantity 𝑑𝒛′1𝑑𝒛

′
2𝑑𝒛2 is the scattering volume per unit time, i.e. the

scattering phase space volume scooped by a particle at 𝒛1 in the unit
time interval. We shall refer to the quantity  , which has dimensions

[ −2 −1]
of 𝑑𝒛 𝑡 , as the scattering volume density per unit time. For the
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Boltzmann collision operator, one has 𝒛 = (𝒗, 𝒒) and also

 = 𝑚−6𝜎 |

|

𝒗1 − 𝒗2|| 𝛿
(

𝒒1 − 𝒒2
)

𝛿
(

𝒒′1 − 𝒒′2
)

𝛿
(

𝒒1 − 𝒒′1
)

, (35)

where 𝜎
(

𝒗1, 𝒗2; 𝒗′1, 𝒗
′
2
)

is the scattering cross-section and 𝒗1, 𝒗2, 𝒗′1, and
𝒗′2 are the spatial velocities of the scattered particles before and after
the collision. In a similar fashion, the rate at which particles originally
at some position 𝒛′1 reach 𝒛1 via scattering with 𝑓2 is

∫ 
(

𝒛′1, 𝒛
′
2; 𝒛1, 𝒛2

)

𝑓1
(

𝒛′1, 𝑡
)

𝑓2
(

𝒛′2, 𝑡
)

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2. (36)

n the other hand, the reversibility of the scattering process requires
hat
(

𝒛1, 𝒛2; 𝒛′1, 𝒛
′
2
)

= 
(

𝒛′1, 𝒛
′
2; 𝒛1, 𝒛2

)

. (37)

e therefore conclude that
(

𝑓1, 𝑓2
)

= ∫ 
(

𝒛1, 𝒛2; 𝒛′1, 𝒛
′
2
) [

𝑓1
(

𝒛′1, 𝑡
)

𝑓2
(

𝒛′2, 𝑡
)

− 𝑓1
(

𝒛1, 𝑡
)

𝑓2
(

𝒛2, 𝑡
)]

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2. (38)

ote that 
(

𝑓1, 𝑓2
) (

𝒛1, 𝑡
)

= 
(

𝑓2, 𝑓1
) (

𝒛1, 𝑡
)

and that collisions are
non-local in the whole phase space (this is in contrast with the Boltz-
mann or Landau collision operators which are local in position space).
Next, recall that, by hypothesis, collisions occur over small spatial
scales, i.e. the displacement

𝛿𝒛 = 𝛿𝒛1 = 𝒛′1 − 𝒛1 = −𝛿𝒛2 = 𝒛2 − 𝒛′2, (39)

s small compared to the spatial scale 𝐿 characterizing Hamiltonian
dynamics without interactions. Here, we used Eq. (22). Hence, we may
expand the distribution functions appearing in the integrand of the
collision operator (38) in powers of 𝛿𝒛 around 𝒛1 and 𝒛2. To this end, it
is convenient to omit the arguments of the functions appearing in the
collision integral to simplify the notation. For example, we shall write
𝑓1 in place of 𝑓1

(

𝒛1, 𝑡
)

. At second order in 𝛿𝒛 we obtain:


(

𝑓1, 𝑓2
)

=∫ 

[(

𝑓1 +
𝜕𝑓1
𝜕𝒛1

⋅ 𝛿𝒛 + 1
2
𝛿𝒛 ⋅

𝜕2𝑓1
𝜕𝒛21

⋅ 𝛿𝒛

)

×

(

𝑓2 −
𝜕𝑓2
𝜕𝒛2

⋅ 𝛿𝒛 + 1
2
𝛿𝒛 ⋅

𝜕2𝑓2
𝜕𝒛22

⋅ 𝛿𝒛

)

− 𝑓1𝑓2

]

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2

∫ 

[

(

𝑓2
𝜕𝑓1
𝜕𝒛1

− 𝑓1
𝜕𝑓2
𝜕𝒛2

)

⋅ 𝛿𝒛 + 1
2
𝛿𝒛 ⋅

(

𝑓1
𝜕2𝑓2
𝜕𝒛22

+ 𝑓2
𝜕2𝑓1
𝜕𝒛21

)

⋅ 𝛿𝒛

−
𝜕𝑓1
𝜕𝒛1

⋅ 𝛿𝒛
𝜕𝑓2
𝜕𝒛2

⋅ 𝛿𝒛
]

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2.

(40)

t is now useful to define the vector field

= 𝑓2
𝜕𝑓1
𝜕𝒛1

− 𝑓1
𝜕𝑓2
𝜕𝒛2

. (41)

bserving that

1
2

(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

𝑱 = 1
2
𝑓2

𝜕𝑓1
𝜕𝒛21

− 1
2
𝜕𝑓1
𝜕𝒛1

𝜕𝑓2
𝜕𝒛2

− 1
2
𝜕𝑓2
𝜕𝒛2

𝜕𝑓1
𝜕𝒛1

+ 1
2
𝑓1

𝜕2𝑓2
𝜕𝒛22

, (42)

q. (40) then becomes

(

𝑓1, 𝑓2
)

= ∫ 
{

𝑱 ⋅ 𝛿𝒛 + 1
2
𝛿𝒛 ⋅

[(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

𝑱
]

⋅ 𝛿𝒛
}

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2.

(43)

ext, notice that from (21) and (24) we have

𝜕
𝜕𝒛1

⋅𝛿𝒛1 = 𝜏𝑐
𝜕
𝜕𝒛1

⋅
(

1 ⋅
𝜕𝑉
𝜕𝒛1

)

= 0, 𝜕
𝜕𝒛2

⋅𝛿𝒛2 = 𝜏𝑐
𝜕
𝜕𝒛2

⋅
(

2 ⋅
𝜕𝑉
𝜕𝒛2

)

= 0.

(44)
6

Hence, after some algebraic manipulations, the collision operator can
be expressed as


(

𝑓1, 𝑓2
)

=∫ 𝑱 ⋅
[

𝛿𝒛 − 1
2

(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

⋅ (𝛿𝒛𝛿𝒛)
]

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2

+ 1
2

𝜕
𝜕𝒛1

⋅ ∫ 𝛿𝒛𝑱 ⋅ 𝛿𝒛 𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2

− 1
2 ∫

𝜕
𝜕𝒛2

⋅ (𝛿𝒛𝑱 ⋅ 𝛿𝒛) 𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2.

(45)

ince interactions occur over small spatial scales 𝓁𝑐 ≪ 𝐿, the displace-
ent 𝛿𝒛 caused by the collision of a particle at 𝒛1, sufficiently distant

rom the boundary, with a particle of the other ensemble, located on
he boundary 𝜕𝛺 of the region 𝛺, vanishes. It follows that the last term,
hich can be written as a boundary integral, is zero. Then,
(

𝑓1, 𝑓2
)

=∫ 𝑱 ⋅
[

𝛿𝒛 − 1
2

(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

⋅ (𝛿𝒛𝛿𝒛)
]

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2

+ 1
2

𝜕
𝜕𝒛1

⋅ ∫ 𝛿𝒛𝑱 ⋅ 𝛿𝒛 𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2.

(46)

ext, recall that the kind of elastic collisions considered here do not
hange the total number of particles. Hence, we must have

𝜕𝑓1
𝜕𝑡

𝑑𝒛1 = ∫ 𝑱 ⋅
[

𝛿𝒛 − 1
2

(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

⋅ (𝛿𝒛𝛿𝒛)
]

𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛1𝑑𝒛2 = 0.

(47)

However, the only term depending on 𝑓1 and 𝑓2 within the integrand
is 𝑱 = 𝑱

(

𝒛1, 𝒛2, 𝑡
)

. Since there is no restriction on the particular shape
of the distributions 𝑓1

(

𝒛1, 𝑡
)

and 𝑓2
(

𝒛2, 𝑡
)

at a given instant 𝑡, one
therefore expects that

∫

[

𝛿𝒛 − 1
2

(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

⋅ (𝛿𝒛𝛿𝒛)
]

𝑑𝒛′1𝑑𝒛
′
2 = 𝟎. (48)

hen, the collision operator (134) reduces to
(

𝑓1, 𝑓2
)

= 1
2

𝜕
𝜕𝒛1

⋅ ∫ 𝛿𝒛𝑱 ⋅ 𝛿𝒛 𝑑𝒛′1𝑑𝒛
′
2𝑑𝒛2. (49)

e now define the scattering frequency through the integral

12 = 𝛤
(

𝒛1, 𝒛2
)

= ∫ 𝑑𝒛′1𝑑𝒛
′
2. (50)

ote that 𝛤 has dimensions of
[

𝑡−1
]

. We expect the scattering frequency
or a particle 𝒛1 impinging on a target 𝒛2 to be the same for the
onjugate process, so that

= 𝛤12 = 𝛤21. (51)

sing the expression (21) for the displacement 𝛿𝒛 one thus arrives at

(

𝑓1, 𝑓2
)

=
𝜏2𝑐
2

𝜕
𝜕𝒛1

⋅
[

𝑓11 ⋅ ∫ 𝑓2𝛤
𝜕𝑉
𝜕𝒛1

𝜕𝑉
𝜕𝒛1

⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2
]

. (52)

where we used the fact that on the spatial scale of the interaction
1 ≈ 2. It is useful to introduce the following symmetric covariant
-tensor

𝑖𝑗 =
1
2
𝜏2𝑐 𝛤

𝜕𝑉
𝜕𝑧𝑖1

𝜕𝑉
𝜕𝑧𝑗1

= 1
2
𝜏2𝑐 𝛤

𝜕𝑉
𝜕𝑧𝑖2

𝜕𝑉
𝜕𝑧𝑗2

. (53)

This tensor, which we will call the interaction tensor, is a property of
the interaction force driving particle collisions. It can be regarded as a
‘degenerate metric tensor’ (positive semi-definite tensor) whose kernel
is spanned by vector fields belonging to the 𝑛 − 1 dimensional tangent
pace 𝑇𝛴𝑉 with 𝛴𝑉 = {𝒛 ∈ 𝛺 ∶ 𝑉 (𝒛) = 𝑐 ∈ R} the level sets of 𝑉 .

The collision operator (52) can thus be equivalently expressed as


(

𝑓1, 𝑓2
)

= 𝜕
𝜕𝒛1

⋅
[

𝑓11 ⋅ ∫ 𝑓2𝛱 ⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2
]

= 𝜕
𝑖

[

𝑓1
𝑖𝑗
1 𝛱𝑗𝑘

(

 𝑘𝑚
2

𝜕 log 𝑓2
𝑚 −  𝑘𝑚

1
𝜕 log 𝑓1

𝑚

)

𝑑𝒛2
]

.
(54)
𝜕𝑧1 ∫ 𝜕𝑧2 𝜕𝑧1
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The complete evolution equations for the distributions 𝑓1 and 𝑓2 there-
fore read as
𝜕𝑓1
𝜕𝑡

= 𝜕
𝜕𝒛1

⋅

{

𝑓11 ⋅

[

−
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

+ ∫ 𝑓2𝛱 ⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2

]}

, (55a)

𝜕𝑓2
𝜕𝑡

= 𝜕
𝜕𝒛2

⋅

{

𝑓22 ⋅

[

−
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

+ ∫ 𝑓1𝛱 ⋅
(

1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

− 2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

)

𝑑𝒛1

]}

. (55b)

bserve that if collisions occur among particles of the same ensemble,
he evolution equation for the distribution function 𝑓 (𝒛, 𝑡) = 𝑓1 (𝒛, 𝑡)

becomes
𝜕𝑓
𝜕𝑡

= 𝜕
𝜕𝒛

⋅
{

𝑓 ⋅
[

−
𝜕 (𝐻 +𝛷)

𝜕𝒛

+ ∫ 𝑓 ′𝛱 ⋅
(

 ′ ⋅
𝜕 log 𝑓 ′

𝜕𝒛′
−  ⋅

𝜕 log 𝑓
𝜕𝒛

)

𝑑𝒛′
]}

, (56)

where 𝑓 ′ = 𝑓
(

𝒛′, 𝑡
)

,  ′ = 
(

𝒛′
)

, 𝛷 = ∫ 𝑓 ′𝑉
(

𝒛, 𝒛′
)

𝑑𝒛′, and 𝛱 =
(

𝒛, 𝒛′
)

, and now we have finally derived the collision operator
f Eq. (2).

A remark is in order with respect to the application of the present
heory to the case of collisions occurring among particles with different
asses and charges. As an example, consider the simplest setting of two

harged species with masses 𝑚𝑎, 𝑚𝑏 and electric charges 𝑒𝑎, 𝑒𝑏. It suffices
o formulate the theory by considering a pair of such particles as the
icroscopic constituent of the statistical ensemble. More precisely, set
=

(

𝒑𝑎, 𝒒𝑎,𝒑𝑏, 𝒒𝑏
)

to be the phase space variables, where
(

𝒑𝑖, 𝒒𝑖
)

,
= 𝑎, 𝑏, are the particles momentum and position, and denote with
(𝒛) the phase space distribution function, with  the Poisson operator

f pair dynamics, and with 𝐻 = 1
2𝑚𝑎

𝒑2𝑎 +
1

2𝑚𝑏
𝒑2𝑏 + 

(

𝒒𝑎 − 𝒒𝑏
)

the pair
Hamiltonian where  is the Coulomb potential energy between the
two particles. Collisions in the system will then represent interactions
between two pairs of particles located at 𝒛1 =

(

𝒑𝑎1, 𝒒𝑎1,𝒑𝑏1, 𝒒𝑏1
)

and
2 =

(

𝒑𝑎2, 𝒒𝑎2,𝒑𝑏2, 𝒒𝑏2
)

and with scattering potential 𝑉
(

𝒛1 − 𝒛2
)

=
1

4𝜋𝜖0

(

𝑒2𝑎
|𝒒𝑎1−𝒒𝑎2|

+ 𝑒𝑎𝑒𝑏
|𝒒𝑎1−𝒒𝑏2|

+ 𝑒𝑎𝑒𝑏
|𝒒𝑏1−𝒒𝑎2|

+
𝑒2𝑏

|𝒒𝑏1−𝒒𝑏2|

)

.

4. Conservation laws, entropy production, and equilibria

The aim of this section if to show that the collision operator derived
in the previous section is consistent with conservation of total particle
number and energy, as well as entropy growth. In addition, we will
discuss the allowed equilibrium configurations and their consequences
for certain systems of physical interest.

4.1. Conservation of particle number, energy, and interior casimir invari-
ants

Conservation of total particle numbers (total probabilities)

𝑁1 = ∫𝛺
𝑓1 𝑑𝒛1 = 1, 𝑁2 = ∫𝛺

𝑓2 𝑑𝒛2 = 1, (57)

is a consequence of the fact that the right-hand side of Eqs. (55a) and
(55b) is in divergence form. Hence, assuming the phase space domain 𝛺
o be a smooth bounded domain with boundary 𝜕𝛺, the rates of change
f 𝑁1 and 𝑁2 can be written as boundary integrals. For example,

𝑑𝑁1
𝑑𝑡

= ∫𝜕𝛺
𝑓11 ⋅

[

−
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

+ ∫𝛺
𝑓2𝛱 ⋅

(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2
]

⋅ 𝒏1 𝑑𝑆1, (58)

where 𝒏1 denotes the unit outward normal to 𝜕𝛺 and 𝑑𝑆1 the corre-
sponding surface element (if 𝒛 are Cartesian coordinates in 𝛺 such
7

1𝑙𝑎𝑏
that 𝑑𝒛1 = 𝐽1𝑑𝒛1𝑙𝑎𝑏 with 𝐽1 = 𝐽
(

𝒛1
)

the Jacobian determinant at 𝒛1,
𝑑𝑆1 = 𝐽1𝑑𝑆1𝑙𝑎𝑏 where 𝑑𝑆1𝑙𝑎𝑏 is the surface element associated with the
Euclidean metric). The surface integral (58) vanishes under appropriate
boundary conditions. For example, setting 𝑓1 = 𝑓2 = 0 on 𝜕𝛺 ensures
that both 𝑁1 and 𝑁2 are constants (provided that 𝜕 log 𝑓1∕𝜕𝒛1 and
𝜕 log 𝑓2∕𝜕𝒛2 are well behaved on the boundary). More generally, one
could demand the probability flux to be tangent to the bounding surface
to ensure the thermodynamic closure of the system, i.e.

𝑓11 ⋅

[

−
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1
+ ∫ 𝑓2𝛱 ⋅

(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2

]

⋅ 𝒏1 = 0 on 𝜕𝛺, (59)

s well as a symmetric condition arising from 𝑑𝑁2∕𝑑𝑡.
Next, consider the total energy of the system,

12 = ∫ 𝑓1𝑓212𝑑𝒛1𝑑𝒛2 = ∫ 𝑓1𝐻1𝑑𝒛1+∫ 𝑓1𝑓2𝑉 𝑑𝒛1𝑑𝒛2+∫ 𝑓2𝐻2𝑑𝒛2.

(60)

sing Eqs. (55a) and (55b), we have

𝑑H12
𝑑𝑡

=∫𝛺
𝜕𝑓1
𝜕𝑡

(

𝐻1 +𝛷1
)

𝑑𝒛1 + ∫𝛺
𝜕𝑓2
𝜕𝑡

(

𝐻2 +𝛷2
)

𝑑𝒛2

=∫𝜕𝛺
𝑓1

(

𝐻1 +𝛷1
)

1 ⋅

[

−
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

+ ∫𝛺
𝑓2𝛱 ⋅

(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2
]

⋅ 𝒏1𝑑𝑆1

+ ∫𝜕𝛺
𝑓2

(

𝐻2 +𝛷2
)

2 ⋅

[

−
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

+ ∫𝛺
𝑓1𝛱 ⋅

(

1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

− 2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

)

𝑑𝒛1
]

⋅ 𝒏2𝑑𝑆2

+ ∫𝛺
𝑓1

[

1 ⋅
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

]

⋅
[

∫𝛺
𝑓2𝛱 ⋅

(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2
]

𝑑𝒛1

+ ∫𝛺
𝑓2

[

2 ⋅
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

]

⋅
[

∫𝛺
𝑓1𝛱 ⋅

(

1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

− 2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

)

𝑑𝒛1
]

𝑑𝒛2.

(61)

oundary terms vanish under suitable boundary conditions as above.
hen,

𝑑H12
𝑑𝑡

=∫ 𝑓1𝑓2

[

1 ⋅
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

]

⋅𝛱

⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛1𝑑𝒛2

∫ 𝑓1𝑓2

[

2 ⋅
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

]

⋅𝛱

⋅
(

1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

− 2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

)

𝑑𝒛1𝑑𝒛2

=1
2
𝜏2𝑐 ∫ 𝑓1𝑓2𝛤

[

1 ⋅
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

]

⋅
𝜕𝑉
𝜕𝒛1

𝜕𝑉
𝜕𝒛1

⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛1𝑑𝒛2

+ 1
2
𝜏2𝑐 ∫ 𝑓1𝑓2𝛤

[

2 ⋅
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

]

⋅
𝜕𝑉
𝜕𝒛1

𝜕𝑉
𝜕𝒛1

⋅
(

1 ⋅
𝜕 log 𝑓1 − 2 ⋅

𝜕 log 𝑓2
)

𝑑𝒛1𝑑𝒛2
𝜕𝒛1 𝜕𝒛2
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𝑓

𝑓

=1
2
𝜏2𝑐 ∫ 𝑓1𝑓2𝛤

[

1 ⋅
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1
− 2 ⋅

𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

]

⋅
𝜕𝑉
𝜕𝒛1

𝜕𝑉
𝜕𝒛1

⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛1𝑑𝒛2

=0,

(62)

here in the last passage we used the fact that energy is conserved
uring a collision event according to Eq. (18). Hence, the energy H12
s constant. It is worth observing that when collisions occur between
articles of the same ensemble, the functional H12 becomes

12 = 2∫ 𝑓𝐻𝑑𝒛 + ∫ 𝑓𝛷 𝑑𝒛. (63)

ence, the conserved energy is

= ∫ 𝑓
(

𝐻 + 1
2
𝛷
)

𝑑𝒛. (64)

In a similar fashion, one can verify that the interior Casimir invari-
ant

C12 = ∫ 𝑓1𝐶1 𝑑𝒛1 + ∫ 𝑓2𝐶2 𝑑𝒛2, (65)

where 𝐶1 = 𝐶
(

𝒛1
)

and 𝐶2 = 𝐶
(

𝒛2
)

are Casimir invariants such that
1𝜕𝒛1𝐶1 = 𝟎 and 2𝜕𝒛2𝐶2 = 𝟎, is a constant of motion. Indeed, assuming
again boundary integrals to vanish, we have

𝑑C12

𝑑𝑡
=∫ 𝑓1

(

1 ⋅
𝜕𝐶1

𝜕𝒛1

)

⋅

[

−
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1
+ ∫ 𝑓2𝛱 ⋅

(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2

]

𝑑𝒛1

+ ∫ 𝑓2

(

2 ⋅
𝜕𝐶2

𝜕𝒛2

)

⋅

[

−
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2
+ ∫ 𝑓1𝛱 ⋅

(

1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

− 2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

)

𝑑𝒛1

]

𝑑𝒛2 = 0.

(66)

We stress again that the interior Casimir invariant C12 is induced on
the field theory by the Casimir invariants 𝐶1 and 𝐶2 of the microscopic
Poisson tensors 1 and 2.

4.2. Entropy production and equilibria

Consider the following entropy measure

𝑆12 = −∫ 𝑓1 log 𝑓1𝑑𝒛1 − ∫ 𝑓2 log 𝑓2𝑑𝒛2. (67)

The rate of change in (67) can be evaluated with the aid of (55a) and
(55b). Assuming boundary integrals to vanish, we have

𝑑𝑆12
𝑑𝑡

=∫ 𝑓1

{

1 ⋅

[

−
𝜕
(

𝐻1 +𝛷1
)

𝜕𝒛1

+ ∫ 𝑓2𝛱 ⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2

]}

⋅
𝜕 log 𝑓1
𝜕𝒛1

𝑑𝒛1

+ 𝑓2

{

2 ⋅

[

−
𝜕
(

𝐻2 +𝛷2
)

𝜕𝒛2

+ ∫ 𝑓1𝛱 ⋅
(

1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

− 2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

)

𝑑𝒛1

]}

⋅
𝜕 log 𝑓2
𝜕𝒛2

𝑑𝒛2

=∫ 𝑓1𝑓2

[

𝛱 ⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)]

⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛1𝑑𝒛2

=1
2
𝜏2𝑐 ∫ 𝑓1𝑓2𝛤

[

𝜕𝑉
𝜕𝒛1

⋅
(

2
𝜕 log 𝑓2
𝜕𝒛2

− 1
𝜕 log 𝑓1
𝜕𝒛1

)]2
𝑑𝒛1𝑑𝒛2 ≥ 0.

(68)
8

here in the last passage we used the measure preserving property
24) of the Poisson tensor  to eliminate terms involving 𝐻1 +𝛷1 and
𝐻2 + 𝛷2 (which can be written as surface integrals), the expression
(53) of the symmetric tensor 𝛱 , and the working hypothesis that 𝑓1
and 𝑓2 remain non-negative functions at all times so that 𝑓1𝑓2 ≥ 0.
Eq. (68) implies that the functional (67) is a non-decreasing function
of time, thus ensuring entropy growth. When collisions occur between
particles of the same ensemble, one can verify in a similar manner that
the relevant entropy measure is given by

𝑆 = −∫ 𝑓 log 𝑓 𝑑𝒛. (69)

Eq. (68) has also consequences for the allowed maximum entropy
configurations (thermodynamic equilibria). Indeed, we must have

lim
𝑡→+∞

𝑑𝑆
𝑑𝑡

= 0, (70)

provided that such limit exists. Since the integrand in Eq. (68) is non-
negative, it follows that a maximum entropy configuration must satisfy

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

∈ ker (𝛱) , (71)

where ker (𝛱) denotes the kernel of the covariant tensor 𝛱 . Recalling
the expression of 𝛱 , Eq. (53), we may equivalently write

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

⋅
𝜕𝑉
𝜕𝒛1

= 0. (72)

Using the elastic scattering property (18), it readily follows that

log 𝑓1 = −𝛽
(

𝐻1 +𝛷1
)

+ 𝑔1
(

𝑪1
)

, log 𝑓2 = −𝛽
(

𝐻2 +𝛷2
)

+ 𝑔2
(

𝑪2
)

,

(73)

is a maximum entropy state satisfying (72). Here, 𝛽 ∈ R, 𝑔1
(

𝑪1
)

nd 𝑔2
(

𝑪2
)

are functions of the Casimir invariants 𝑪 =
(

𝐶1,… , 𝐶𝑘
)

panning the kernel of the Poisson tensor  (see Eq. (28)), and the
otation 𝑪1 = 𝑪

(

𝒛1
)

, 𝑪2 = 𝑪
(

𝒛2
)

has been used. The precise form
f the functions 𝑔1 and 𝑔2 depends on initial conditions (the initial
alues of the Casimir invariants). It can be verified that (73) is the
ost general solution of (72) for arbitrary 𝑉 by noting that 𝑓1 and
2 are independent of 𝒛2 and 𝒛1 respectively, a fact that forces 𝛽 to
e a spatial constant. Here, we are assuming that energy 𝐻 + 𝛷 is
he only nontrivial invariant during a collision event, but the case
n which other conserved quantities exist during collisions will be
iscussed later. In particular, we will see that the presence of other
cattering invariants results in additional contributions on the right-
and side of (73). As in the usual Boltzmann distribution, the constant
can be interpreted as the temperature of the system. The positive

ign of 𝛽 can be deduced from the fact that 𝐻 includes the kinetic
nergy of the colliding particles, and therefore a negative 𝛽 would result
n divergence of the distribution functions at large kinetic energies.
ow suppose that the phase space coordinates 𝒛1 and 𝒛2 bearing the

nvariant measure of the system are connected to the laboratory frame
oordinates (the coordinates used to observe the system) 𝒛1𝑙𝑎𝑏 and 𝒛2𝑙𝑎𝑏
hrough the Jacobian determinant 𝐽 according to 𝑑𝒛1 = 𝐽1𝑑𝒛1𝑙𝑎𝑏 and
𝒛2 = 𝐽2𝑑𝒛2𝑙𝑎𝑏 with 𝐽1 = 𝐽

(

𝒛1
)

and 𝐽2 = 𝐽
(

𝒛2
)

. Then, the equilibrium
istribution functions observed in the laboratory frame are

1𝑙𝑎𝑏 = 𝐽1 exp
{

−𝛽
(

𝐻1 +𝛷1
)

+ 𝑔1
(

𝑪1
)}

,

2𝑙𝑎𝑏 = 𝐽2 exp
{

−𝛽
(

𝐻2 +𝛷2
)

+ 𝑔2
(

𝑪2
)}

. (74)

We therefore see that significant departure from standard Maxwell–
Boltzmann statistics may occur for collision processes in noncanonical
phase spaces through the Jacobian determinant 𝐽 and the functions 𝑔1
and 𝑔2, which arise as a consequence of the geometric properties of the
Poisson tensor  .

A final remark concerns the existence of other quantities that are

preserved during a collision event in addition to the total energy of
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the colliding particles. For example, suppose that collisions do not
alter the total vertical angular momentum 𝓁𝑧1 + 𝓁𝑧2 of the interacting
particles. This means that a condition analogous to the elastic scattering
condition (18) holds, namely
(

1𝜕𝒛1𝓁𝑧1 − 2𝜕𝒛2𝓁𝑧2
)

⋅ 𝜕𝒛1𝑉 = 0. (75)

If the vertical angular momentum 𝓁𝑧 is also a constant for the motion
of each particle, i.e. 𝜕𝒛𝓁𝑧 ⋅  𝜕𝒛 (𝐻 +𝛷) = 0 (note that here 𝓁𝑧 does not
need to be a Casimir invariant of the Poisson tensor), then one can show
that the total angular momentum 𝐿𝑧12 = ∫ 𝑓1𝓁𝑧1 𝑑𝒛1 + ∫ 𝑓2𝓁𝑧2 𝑑𝒛2 is a
onstant of motion and the equilibrium (74) is further generalized to

1𝑙𝑎𝑏 = 𝐽1 exp
{

−𝛽
(

𝐻1 +𝛷1
)

− 𝛾𝓁𝑧1 + 𝑔1
(

𝑪1
)}

,

𝑓2𝑙𝑎𝑏 = 𝐽2 exp
{

−𝛽
(

𝐻2 +𝛷2
)

− 𝛾𝓁𝑧2 + 𝑔2
(

𝑪2
)}

, (76)

where 𝛾 is a real constant. It is worth observing that here log 𝑓1 and
log 𝑓2 can only be linear functions of 𝓁𝑧1 and 𝓁𝑧2: quantities that are
preserved by binary interactions always appear linearly in the loga-
rithm of the equilibrium distribution function. This is in contrast with
Casimir invariants, which affect the distribution function according to
initial conditions because their value remains constant for each particle
regardless of collisions. A practical example of the scenario above
is given by binary gravitational collisions of massive particles whose
orbits are restricted to the plane 𝑧 = 0 of a Cartesian coordinate system
and whose initial total angular momentum is 𝑳12 = 𝐿𝑧12∇𝑧 ≠ 𝟎 (this
system could represent stars rotating within the galactic plane). Indeed,
denoting with 12 =

1
2𝑚𝒑

2
1+

1
2𝑚𝒑

2
2+𝑉

(

|

|

𝒒1 − 𝒒2||
)

the Hamiltonian of two
interacting particles, we have

𝑑
𝑑𝑡

(

𝓁𝑧1 + 𝓁𝑧2
)

=
(

𝒒̇1 × 𝒑1 − 𝒒1 ×
𝜕12
𝜕𝒒1

+ 𝒒̇2 × 𝒑2 − 𝒒2 ×
𝜕12
𝜕𝒒2

)

⋅ ∇𝑧

= 𝜕𝑉
𝜕𝒒1

×
(

𝒒1 − 𝒒2
)

⋅ ∇𝑧 = 0,

(77)

which corresponds to the condition (75).
We conclude by observing that a similar reasoning would apply

to conservation of momentum. For example, replacing 𝓁𝑧 with the 𝑧-
component of momentum 𝑝𝑧, and assuming that 𝑝𝑧 is conserved by
isolated particle dynamics, as well as during binary collisions, it readily
follows that the total vertical momentum 𝑃𝑧 = ∫ 𝑓1𝑝𝑧1𝑑𝒛1 + ∫ 𝑓2𝑝𝑧2𝑑𝒛2
is a constant of motion, resulting in a modification of the equilibrium
distribution function analogous to that given in (76) for angular mo-
mentum. Note that whether the conservation of total 𝑧-momentum (or
any relevant global invariant) arises as an interior Casimir invariant de-
pends on the particular reduction applied to the microscopic dynamical
system. For example, if standard charged particle dynamics in canonical
phase space is considered, the conservation of 𝑃𝑧 will not arise as
an interior Casimir invariant, but as a consequence of the Noether
symmetry of the interaction. Conversely, if a reduction is carried out in
such a way that 𝜕𝒛𝑝𝑧 ∈ ker  , 𝑃𝑧 will be an interior Casimir invariant.

. Examples

As outlined in the introduction, the main purpose of the present
heory is to capture non-trivial self-organized structures that arise when
physical system is allowed to relax over spacetime scales that retain

he noncanonicality of the Poisson tensor  . Hence, our main focus is
ot to generalize the type of interactions 𝑉 driving the thermalization
f the system, but rather to understand the effect of noncanonical
hase spaces on collision processes driven by standard interactions,
uch as the Coulomb or gravitational ones. In this section we therefore
escribe some physical systems that are appropriately described by
he evolution Eqs. (55a) and (55b) derived above, and explain how
he present theory relates to the phenomena of self-organization and
ollisionless relaxation.
9

−

5.1. The waterbag model for the 1D vlasov–Poisson equation

Consider the one dimensional Vlasov–Poisson equation in a periodic
region 𝛺 = [0, 2𝜋] for the distribution function 𝑓 (𝑝, 𝑞, 𝑡) of an ensemble
of charged particles,

𝜕𝑓
𝜕𝑡

+ 𝑝
𝜕𝑓
𝜕𝑞

− 𝜕𝛷
𝜕𝑞

𝜕𝑓
𝜕𝑝

= 0, 𝜕2𝛷
𝜕𝑞2

= −∫R
𝑓𝑑𝑝. (78)

In this notation, 𝑝 ∈ R and 𝑞 ∈ 𝛺 denote the momentum and position of
a charged particle with energy 𝐸 (𝑝, 𝑞, 𝑡) = 𝑝2∕2 +𝛷, physical constants
have been set to unity, and 𝛷 (𝑞, 𝑡) represents the electric potential
energy. The waterbag model [44] arises when the distribution function
𝑓 is piecewise constant between pair of curves 𝑝𝛼 (𝑞, 𝑡) and 𝑝𝛼+1 (𝑞, 𝑡)
with 𝛼 ∈ Z, i.e.

𝑓 (𝑝, 𝑞, 𝑡) = 𝑓𝛼 ∈ R≥0 if 𝑝𝛼 ≤ 𝑝 < 𝑝𝛼+1. (79)

Then, noting that 𝑞̇ = 𝜕𝐸∕𝜕𝑝 = 𝑝, the dynamics of the curves 𝑝𝛼 is
described by the equations

𝜕𝑝𝛼

𝜕𝑡
+ 𝑝𝛼

𝜕𝑝𝛼

𝜕𝑞
= − 𝜕𝛷

𝜕𝑞
, 𝜕2𝛷

𝜕𝑞2
= −

∑

𝛼
𝑓𝛼

(

𝑝𝛼+1 − 𝑝𝛼
)

. (80)

System (80) has a noncanonical Hamiltonian structure in terms of the
Hamiltonian

H =
∑

𝛼

𝛥𝑓𝛼
6 ∫𝛺

(𝑝𝛼)3 𝑑𝑞 + 1
2 ∫𝛺

(

𝜕𝛷
𝜕𝑞

)2
𝑑𝑞, (81)

with 𝛥𝑓𝛼 = 𝑓𝛼−1 − 𝑓𝛼 , and the Poisson bracket

{𝐹 ,𝐺}∗ = −
∑

𝛼

1
𝛥𝑓𝛼 ∫𝛺

𝛿𝐹
𝛿𝑝𝛼

𝜕
𝜕𝑞

𝛿𝐺
𝛿𝑝𝛼

𝑑𝑞, (82)

acting on functionals 𝐹 ,𝐺 of the functions 𝑝𝛼 . In particular, observing
that under periodic boundary conditions 𝛿 ∫𝛺

(

𝛷𝑞
)2 = −2 ∫𝛺 𝛷𝛿𝛷𝑞𝑞𝑑𝑞

and 𝛿𝛷𝑞𝑞 = −
∑

𝛼 𝛥𝑓𝛼𝛿𝑝
𝛼 , Eq. (80) takes the form

𝜕𝑝𝛼

𝜕𝑡
= {𝑝𝛼 ,H}∗ . (83)

We refer the reader to [44] for the derivation of Eqs. (81) and (82),
and to Section 7 below for the definition of the Poisson bracket {⋅, ⋅}∗.
The Poisson bracket (82) admits the Casimir invariants

C𝛼 = ∫𝛺
𝑝𝛼 𝑑𝑞, (84)

which measure the areas subtended by the curves 𝑝𝛼 . Indeed, assuming
periodic boundary conditions,
𝑑C𝛼

𝑑𝑡
= {C𝛼 , 𝐺} = 0 ∀𝐺. (85)

ur task is now to obtain a discrete Hamiltonian system for the Fourier
oefficients 𝑐𝛼𝑘 (𝑡) of the expansion

𝛼 =
∞
∑

𝑘=−∞
𝑐𝛼𝑘𝑒

i𝑘𝑞 , (86)

nder the hypothesis that the curves 𝑝𝛼 are periodic in 𝛺. Since the
urves 𝑝𝛼 are real valued functions, we have 𝑐𝛼𝑘 = 𝑐𝛼∗−𝑘, where ∗ denotes
he complex conjugate. Substituting the Fourier representation (86)
nto Eq. (80), one obtains the following system of equations for the
ourier coefficients,
𝑑𝑐𝛼𝑘
𝑑𝑡

+ i
∑

𝑚
(𝑘 − 𝑚) 𝑐𝛼𝑚𝑐

𝛼
𝑘−𝑚 = −i

∑

𝛽

𝑓𝛽
𝑘

(

𝑐𝛽+1𝑘 − 𝑐𝛽𝑘
)

if 𝑘 ≠ 0, (87a)

𝑑𝑐𝛼0
𝑑𝑡

− i
∑

𝑚
𝑚𝑐𝛼𝑚𝑐

𝛼
−𝑚 = 0. (87b)

Here, we enforced the boundary condition 𝛷𝑞 (0) = 0 and ob-
erved that periodicity implies that 𝛷𝑞 =

∑

𝛼,𝑘≠0 i𝑘−1𝛥𝑓𝛼𝑐
𝛼
𝑘
(

𝑒i𝑘𝑞 − 1
)

−
∑

𝛼 𝛥𝑓𝛼𝑐
𝛼
0 which gives 0 = 𝛷𝑞 (2𝜋) = −2𝜋

∑

𝛼 𝛥𝑓𝛼𝑐
𝛼
0 and ∫ 2𝜋

0 𝛷𝑞 𝑑𝑞 =
2𝜋

∑

i𝑘−1𝛥𝑓 𝑐𝛼 so that 𝛷 =
∑

i𝑘−1𝛥𝑓 𝑐𝛼𝑒i𝑘𝑞 . On the other
𝛼,𝑘≠0 𝛼 𝑘 𝑞 𝛼,𝑘≠0 𝛼 𝑘
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0 = ∫

2𝜋

0

𝜕𝑝𝛼

𝜕𝑞
(𝑝𝛼)2 𝑑𝑞

=
∑

𝑚,𝑛,𝑘
i𝑚∫

2𝜋

0
𝑐𝛼𝑚𝑐

𝛼
𝑛 𝑐

𝛼
𝑘 exp {i (𝑚 + 𝑛 + 𝑘) 𝑞} 𝑑𝑞 = 2𝜋i

∑

𝑚,𝑛
𝑚𝑐𝛼𝑚𝑐

𝛼
𝑛 𝑐

𝛼
−𝑚−𝑛.

(88)

It follows that

0 =
∑

𝑚,𝑛
𝑚 𝜕
𝜕𝑐𝛼𝑘

(

𝑐𝛼𝑚𝑐
𝛼
𝑛 𝑐

𝛼
−𝑚−𝑛

)

=
∑

𝑚,𝑛

(

𝑚𝛿𝑘𝑚𝑐
𝛼
𝑛 𝑐

𝛼
−𝑚−𝑛 + 𝑚𝛿𝑘𝑛𝑐

𝛼
𝑚𝑐

𝛼
−𝑚−𝑛 + 𝑚𝛿𝑘,−𝑚−𝑛𝑐

𝛼
𝑚𝑐

𝛼
𝑛
)

=
∑

𝑚

(

𝑘𝑐𝛼𝑛 𝑐
𝛼
−𝑘−𝑛 + 𝑚𝑐𝛼𝑚𝑐

𝛼
−𝑘−𝑚 + 𝑚𝑐𝛼𝑚𝑐

𝛼
−𝑘−𝑚

)

=
∑

𝑚
(2𝑚 + 𝑘) 𝑐𝛼𝑚𝑐

𝛼
−𝑘−𝑚.

(89)

rom this equation, one finds that

𝑚
𝑘𝑐𝛼𝑚𝑐

𝛼
𝑘−𝑚 =

∑

𝑚
2𝑚𝑐𝛼𝑚𝑐

𝛼
𝑘−𝑚, 0 =

∑

𝑚
𝑚𝑐𝛼𝑚𝑐

𝛼
−𝑚. (90)

he system of Eqs. (87) can therefore be expressed as

𝑑𝑐𝛼𝑘
𝑑𝑡

= − 1
2
i
∑

𝑚
𝑘𝑐𝛼𝑚𝑐

𝛼
𝑘−𝑚 − i

∑

𝛽

𝛥𝑓𝛽
𝑘

𝑐𝛽𝑘 if 𝑘 ≠ 0 (91a)

𝑑𝑐𝛼0
𝑑𝑡

=0. (91b)

On the other hand, observe that the Hamiltonian (81) becomes

=
∑

𝛼,𝑚,𝑛

𝛥𝑓𝛼
3

𝜋𝑐𝛼𝑚𝑐
𝛼
𝑛 𝑐

𝛼
−𝑚−𝑛 +

1
2 ∫𝛺

|

|

|

|

|

|

∑

𝛼,𝑚≠0

𝛥𝑓𝛼
𝑚

𝑐𝛼𝑚𝑒
i𝑚𝑞

|

|

|

|

|

|

2

𝑑𝑞

=
∑

𝛼,𝑚,𝑛

𝛥𝑓𝛼
3

𝜋𝑐𝛼𝑚𝑐
𝛼
𝑛 𝑐

𝛼
−𝑚−𝑛 + 𝜋

∑

𝛼,𝛽,𝑚≠0

𝛥𝑓𝛼𝛥𝑓𝛽
𝑚2

𝑐𝛼𝑚𝑐
𝛽
−𝑚.

(92)

or 𝑘 ≠ 0 we may therefore evaluate

𝜕H
𝜕𝑐𝛾𝑘

=
∑

𝑚,𝑛

𝛥𝑓𝛾
3

𝜋
(

2𝛿𝑚𝑘𝑐𝛾𝑛𝑐
𝛾
−𝑚−𝑛 + 𝛿−𝑚−𝑛,𝑘𝑐

𝛾
𝑚𝑐

𝛾
𝑛
)

+ 2𝜋
∑

𝛽

𝛥𝑓𝛾𝛥𝑓𝛽
𝑘2

𝑐𝛽−𝑘

=𝜋𝛥𝑓𝛾
∑

𝑚
𝑐𝛾𝑚𝑐

𝛾
−𝑘−𝑚 + 2𝜋𝛥𝑓𝛾

∑

𝛽

𝛥𝑓𝛽
𝑘2

𝑐𝛽−𝑘.
(93)

Similarly,

𝜕H
𝜕𝑐𝛾0

= 𝜋𝛥𝑓𝛾
∑

𝑚
𝑐𝛾𝑚𝑐

𝛾
−𝑚. (94)

Introducing the Poisson bracket,

{𝐹 ,𝐺}′ = −
∑

𝛼,𝑘

i𝑘
2𝜋𝛥𝑓𝛼

𝜕𝐹
𝜕𝑐𝛼𝑘

𝜕𝐺
𝜕𝑐𝛼−𝑘

= −
∑

𝛼

∞
∑

𝑘=0

i𝑘
2𝜋𝛥𝑓𝛼

(

𝜕𝐹
𝜕𝑐𝛼𝑘

𝜕𝐺
𝜕𝑐𝛼−𝑘

− 𝜕𝐹
𝜕𝑐𝛼−𝑘

𝜕𝐺
𝜕𝑐𝛼𝑘

)

, (95)

where 𝐹 and 𝐺 are functions of the Fourier coefficients, for all 𝑘 the
equations of motion (91) can be written as

𝑑𝑐𝛼𝑘
𝑑𝑡

=
{

𝑐𝛼𝑘 ,H
}′ = − i𝑘

2𝜋𝛥𝑓𝛼
𝜕H
𝜕𝑐𝛼−𝑘

. (96)

Notice that the Casimir invariants (84), which evaluate to C𝛼 = 2𝜋𝑐𝛼0 ,
satisfy

𝑑C𝛼

𝑑𝑡
= 2𝜋

{

𝑐𝛼0 ,H
}′ = 0, (97)

or any H.
Now consider the dynamical variables 𝒄𝛼 =

(

..., 𝑐𝛼−2, 𝑐
𝛼
−1, 𝑐

𝛼
0 , 𝑐

𝛼
1 , 𝑐

𝛼
2 ,…

)

and define the contravariant 2-tensor  𝑖𝑗
𝛼 whose non-zero components

are given by

 𝑘−𝑘 = − −𝑘𝑘 = − i𝑘 . (98)
10

𝛼 𝛼 2𝜋𝛥𝑓𝛼
The equations of motion (96) take the form
𝑑𝑐𝛼𝑖
𝑑𝑡

=  𝑖𝑗
𝛼
𝜕H𝛼

𝜕𝑐𝛼𝑗
, (99)

here H𝛼 is the energy of the 𝛼th waterbag with expression

𝛼 =
∑

𝑚,𝑛

𝛥𝑓𝛼
3

𝜋𝑐𝛼𝑚𝑐
𝛼
𝑛 𝑐

𝛼
−𝑚−𝑛 + 2𝜋

∑

𝛽≠𝛼,𝑚≠0

𝛥𝑓𝛼𝛥𝑓𝛽
𝑚2

𝑐𝛼𝑚𝑐
𝛽
−𝑚 + 𝜋

∑

𝑚≠0

𝛥𝑓 2
𝛼

𝑚2
𝑐𝛼𝑚𝑐

𝛼
−𝑚.

(100)

Furthermore, the volume elements 𝑑𝑐𝛼𝑘𝑑𝑐
𝛼
−𝑘, 𝑘 ≠ 0, are invariant

because

𝜕
𝜕𝑐𝛼𝑘

𝑑𝑐𝛼𝑘
𝑑𝑡

+ 𝜕
𝜕𝑐𝛼−𝑘

𝑑𝑐𝛼−𝑘
𝑑𝑡

= 0. (101)

We are now ready to apply the theory developed in sections 2, 3,
and 4. In particular, we consider the following scenario: the waterbags
numbered by 𝛼 are such that 𝑓 defines a zebra-like pattern with empty
regions (𝑓𝛼 = 0) separating populated regions (𝑓𝛼 > 0). Two non-empty
regions interact, e.g. via the Coulomb force, when some portion of their
boundaries becomes sufficiently close during waterbag dynamics (this
condition implies that the relative velocity of the colliding waterbags is
not too large). However, the interacting regions do not merge, resulting
in area preserving scatterings between waterbags. Let  =  (𝒄𝛼) denote
the distribution function in the space of the Fourier coefficients. The
distribution  will therefore obey the evolution Eq. (56) with 𝐻 +𝛷 =
H𝛼 and with 𝑉 modeling binary interactions between waterbags in
terms of the Fourier coefficients. The resulting equilibrium predicted
by (73) takes the form

∞ ∝ exp
[

−𝛽H𝛼 − 𝑔
(

𝑐𝛼0
)]

. (102)

his equation informs us about the effect of waterbag area preservation,
hich is quantified by the function 𝑔

(

𝑐𝛼0
)

, on the final distribution of
ourier coefficients, which determines the most probable (or average)
ontour profile 𝑝̄ (𝑞) = 𝑐𝑘𝑒i𝑘𝑞 with 𝑐𝑘 = ∫ ∞𝑐𝛼𝑘𝑑𝒄

𝛼 once the system has
elaxed (since  is a real valued function, the value of this integral can
e evaluated by noting that 𝑑𝑐𝛼𝑘∧𝑑𝑐

𝛼
−𝑘 = 2i𝐴𝛼

𝑘𝑑𝜑
𝛼
𝑘∧𝑑𝐴

𝛼
𝑘 with 𝑐𝛼𝑘 = 𝐴𝛼

𝑘𝑒
i𝜑𝛼

𝑘

nd 𝐴𝛼
𝑘 and 𝜑𝛼

𝑘 real valued functions.
As an example, let us attempt an explicit evaluation of the average

aterbag area and energy in the simplified case in which |

|

𝑐𝑘|| ≤ 𝜖 for
≠ 0 with 𝜖 > 0 a small ordering parameter (the amplitude of the

ontrivial Fourier modes is small). In this setting, we may write

𝛼 =
𝛥𝑓𝛼
3

𝜋
(

𝑐𝛼0
)3 + 𝑂

(

𝜖2
)

. (103)

It follows that we may approximate the ensemble averaged waterbag
area as

⟨C𝛼
⟩ ≈ 2𝜋

∫R 𝑑𝑐𝛼0 𝑐
𝛼
0 exp

{

−𝛽 𝛥𝑓𝛼
3
𝜋
(

𝑐𝛼0
)3 − 𝑔

(

𝑐𝛼0
)

}

∏

𝑘≠0 ∫
2𝜋
0 ∫ 𝜖2

0 i𝑑𝜑𝛼
𝑘𝑑

(

𝐴𝛼
𝑘

)2

∫R 𝑑𝑐𝛼0 exp
{

−𝛽 𝛥𝑓𝛼
3
𝜋
(

𝑐𝛼0
)3 − 𝑔

(

𝑐𝛼0
)

}

∏

𝑘≠0 ∫
2𝜋
0 ∫ 𝜖2

0 i𝑑𝜑𝛼
𝑘𝑑

(

𝐴𝛼
𝑘

)2
.

(104)

or the distribution function ∞ to be finite in the limit ||
|

𝑐𝛼0
|

|

|

→ ∞ the
unction 𝑔

(

𝑐𝛼0
)

must grow as an even power of 𝑐𝛼0 of degree higher
han 3 in the same limit. For example, setting 𝑔

(

𝑐𝛼0
)

= 𝛾
(

𝑐𝛼0
)4 for some

positive real valued constant 𝛾, one arrives at

⟨C𝛼
⟩ ≈ 2𝜋

∫R 𝑑𝑐𝛼0 𝑐
𝛼
0 exp

{

−𝛽 𝛥𝑓𝛼
3 𝜋

(

𝑐𝛼0
)3 − 𝛾

(

𝑐𝛼0
)4
}

∫R 𝑑𝑐𝛼0 exp
{

−𝛽 𝛥𝑓𝛼
3 𝜋

(

𝑐𝛼0
)3 − 𝛾

(

𝑐𝛼0
)4
} . (105)

In the same way, the ensemble averaged waterbag energy can be
approximated as

⟨H𝛼
⟩ ≈

𝛥𝑓𝛼
3

𝜋
∫R 𝑑𝑐𝛼0

(

𝑐𝛼0
)3 exp

{

−𝛽 𝛥𝑓𝛼
3 𝜋

(

𝑐𝛼0
)3 − 𝛾

(

𝑐𝛼0
)4
}

∫ 𝑑𝑐𝛼 exp
{

−𝛽 𝛥𝑓𝛼 𝜋
(

𝑐𝛼
)3 − 𝛾

(

𝑐𝛼
)4
} . (106)
R 0 3 0 0
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5.2. Charged particle diffusion by 𝑬×𝑩 drift in an integrable magnetic field

The 𝑬 × 𝑩 drift equations of motion

𝒙̇ = 𝑬 × 𝑩
𝐵2

= 𝑩
𝐵2

× ∇𝛷, (107)

where 𝑬 = −∇𝛷 is the electric field and 𝒛 = 𝒙 = (𝑥, 𝑦, 𝑧), represent a
reduced set of equations that describe plasma dynamics in a regime in
which inertial effects are negligible due to the smallness of the mass
to charge ratio, and the temperature of charged particles is low (the
plasma is cold). Indeed, in the absence of additional forces, particles
are only allowed to drift across the magnetic field with velocity (107)
due to force balance 𝒙̇ × 𝑩 + 𝑬 = 𝟎.

The 𝑬×𝑩 drift dynamics described by Eq. (107) is at the basis of tur-
bulence and transport processes in magnetically confined plasmas, such
as drift wave turbulence in tokamaks [45] or inward diffusion in mag-
netospheres [46]. Furthermore, the mathematical structure of Eq. (107)
generalizes rigid body dynamics [23,47]. Indeed, by identifying 𝒙 with
the components of the angular momentum of a rigid body, choosing
𝛷 =

(

𝑥2𝐼−1𝑥 + 𝑦2𝐼−1𝑦 + 𝑧2𝐼−1𝑧

)

∕2 to represent the rigid body energy,
with 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 denoting the moments of inertia, and setting 𝑩 =
𝒙∕𝒙2, one obtains the rigid body equations of motion.

It is well known [47,48] that a necessary condition for Eq. (107)
to define an Hamiltonian system is that the candidate Poisson tensor
𝐵−2𝑩× satisfies the Jacobi identity

𝑩 ⋅ ∇ × 𝑩 = 0. (108)

The vanishing of helicity density expressed by Eq. (108) is nothing but
the Frobenius integrability condition for the magnetic field: if (108)
holds there exist local functions 𝜆 (𝒙) and 𝐶 (𝒙) such that 𝑩 = 𝜆∇𝐶.
Furthermore, the function 𝐶 is a Casimir invariant because 𝐶̇ = 𝒙̇ ⋅
∇𝐶 = 0 for any 𝛷. Eq. (108) is also a necessary condition for the
existence of an invariant measure independent of the Hamiltonian 𝛷.
The corresponding preserved phase space volume is 𝑑𝑉𝐼 = 𝜆 |∇𝐶|

2 𝑑𝒙.
In this subsection we consider an ensemble of charged particles

beying (107) where 𝛷 = ∫ 𝑉 𝑓 ′𝑑𝒙′ denotes the ensemble averaged
nteraction energy and 𝑓 (𝒙, 𝑡) the particle distribution function in some
mooth bounded domain 𝛺 ⊂ R3. These particles are also allowed
o interact through binary collisions with potential energy 𝑉 (e.g. the
oulomb potential energy). We restrict our attention to configurations

n which the magnetic field defines the normal of a two dimensional
urface, i.e. 𝑩 = 𝜆∇𝐶 ≠ 𝟎 with 𝜆 > 0, since this conditions guarantees
he existence of a globally defined invariant measure 𝑑𝑉𝐼 required for
he formulation of the collision operator discussed in sections 2 and
. Let 𝑔 (𝒙, 𝑡) denote the distribution function on the invariant measure
𝑉𝐼 . Since 𝑓𝑑𝒙 = 𝑔𝑑𝑉𝐼 , it follows that 𝑓 = 𝑔𝜆 |∇𝐶|

2. The evolution
quation for the distribution function 𝑔 can therefore be written in
erms of 𝑓 with the aid of Eq. (56),
𝜕𝑓
𝜕𝑡

= − ∇ ⋅
(

𝑓 ∇𝐶 × ∇𝛷
𝜆 |∇𝐶|

2

)

+

∇ ⋅
{

𝑓 ∇𝐶
𝜆 |∇𝐶|

2
× ∫ 𝑓 ′𝛱 ⋅

[

∇𝐶 ′

𝜆′ |∇𝐶 ′
|

2
× ∇ log

(

𝑓 ′

𝜆′ |∇𝐶 ′
|

2

)

− ∇𝐶
𝜆 |∇𝐶|

2
× ∇ log

(

𝑓
𝜆 |∇𝐶|

2

)]

𝑑𝒙′
}

.

(109)

ccording to Eqs. (73) and (74) the resulting equilibrium distribution
unction has expression

∞ = 𝜆 |∇𝐶|

2 exp {−𝛽𝛷 + 𝑔 (𝐶)} = 𝑩2

𝜆
exp {−𝛽𝛷 + 𝑔 (𝐶)} , (110)

where 𝑔 (𝐶) is some function of 𝐶 determined by initial conditions.
From this equation, it is clear that 𝑓∞ exhibits a strong departure
rom a Boltzmann distribution 𝑓B ∝ exp {−𝛽𝛷} due to the distortion
|∇𝐶|

2 = 𝑩2∕𝜆 of the invariant measure caused by the magnetic field
nhomogeneity and the conservation of the Casimir invariant 𝐶. The
istribution function (110) thus represents a clear-cut example of self-
rganization caused by the noncanonical Hamiltonian structure of the
11
hase space. Special cases of interest are vacuum fields (𝜆 = 1), such as
dipole magnetic field, and straight magnetic fields (𝜆 = 1, 𝐶 = 𝐵0𝑧,

𝐵0 ∈ R). We remark that configurations of the type (110) are predicted
by relaxation theory of plasmas constrained by adiabatic invariants,
and are observed in experiments involving the confinement of charged
particles by dipole magnetic fields (see e.g [3,6,46,49,50]).

5.3. Self-organization in a collisionless magnetized plasma

The physical parameters characterizing magnetized plasmas often
arise in combinations such that binary Coulomb interactions between
charged particles can be effectively neglected. Such plasmas are ‘col-
lisionless’. Examples include both laboratory experiments in which a
plasma is confined with a strong magnetic field [3,49,51], and astro-
physical systems such as accretion disks or plasmas trapped in planetary
magnetospheres [38,39]. There are two common features that charac-
terize these systems. First, equilibrium configurations may exist. This
means that they are achieved over spatial and time scales where the
effect of binary Coulomb collisions is negligible. A fundamental theoret-
ical issue therefore exists with respect to the mechanism enabling such
thermalization in the absence of a microscopic dissipation process. Sec-
ondly, these equilibria exhibit self-organized structures. In particular,
the distribution functions sensibly depart from the Maxwell–Boltzmann
distribution. At first glance, this fact may appear to be inconsistent with
the second law of thermodynamics, which requires entropy to grow in a
closed thermodynamic system. Here, we emphasize that treating such
systems as open thermodynamic systems is not sufficient to account
for their self-organizing behavior. In the following, we argue that the
theory developed in the present paper can explain both collisionless
thermalization and self-organization in consistency with the laws of
thermodynamics. To see this, we shall discuss the self-organization of
a collisionless non-neutral plasma confined by a strong magnetic field.

To give the calculation a practical context we will use physical
parameters that are consistent with laboratory experiments involving
the confinement of charged particles in a dipole magnetic field (see
for example [52,53]). Consider an electron plasma in a static magnetic
field 𝑩 = 𝑩 (𝒙) with typical field strength 𝐵 ∼ 1𝑇 (we could mimic
a laboratory or planetary magnetosphere by taking 𝑩 to be a dipole
magnetic field, but the argument holds true for any magnetic field).
Let 𝐿 ∼ 1m be the system size (this could be the size of the confining
device) and suppose that the typical electron kinetic energy is 𝛽−1𝑒 =
𝑘𝐵𝑇𝑒 ∼ 10 𝑒𝑉 , with 𝑘𝐵 the Boltzmann constant. The electrons tend
to move along the magnetic field while performing cyclotron gyration
with gyroradius

𝑟𝑔 =
𝑚𝑣⟂
𝑒𝐵

∼ 10−5 m, (111)

where 𝑣⟂ is the electron velocity perpendicular to 𝑩, 𝑚 the electron
ass, and 𝑒 > 0 the modulus of the electron charge. Denoting with
∼ 1012 m−3 the typical electron density, the distance at which binary
oulomb collisions result in energy changes comparable to the electron
inetic energy can be estimated as

𝑐 =
𝑒2

4𝜋𝜖0𝑘𝐵𝑇𝑒
∼ 10−10 m, (112)

while the average distance among particles is

𝑟𝑑 = 𝑛−1∕3 ∼ 10−4 m. (113)

Furthermore, the frequency of binary Coulomb collisions can be esti-
mated [54] as

𝜈𝑐 ∼
𝑒4 log𝛬

12𝜋3∕2𝜖20𝑚
1∕2

𝑛𝛽3∕2𝑒 ∼ 6 × 10−2 log𝛬𝑠−1, (114)

where log𝛬 is the Coulomb logarithm. Now observe that since by
hypothesis the deflection angle is small, 𝜒 ≪ 1, the Coulomb logarithm
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can be approximated as

log𝛬 = log
(

𝜒max
𝜒min

)

∼ log
(

sin𝜒max
sin𝜒min

)

∼ log
(

𝑏max
𝑏min

)

, (115)

where 𝑏max and 𝑏min are the maximum and minimum impact parame-
ters. The order of 𝑏min can be estimated in terms of the distance between
the two colliding particles resulting in a Coulomb energy of the same
order as the average kinetic energy. However, the maximum impact
parameter 𝑏max cannot be directly estimated in terms of the Debye
length 𝜆𝐷 =

√

𝜖0∕𝛽𝑒𝑛𝑒2 because the system is not neutral. Nevertheless,
observing that the average distance among particles is several orders
of magnitude greater than the distance required for a collision to
result in a significant change in the particle energies, 𝑟𝑑 ≫ 𝑟𝑐 , we
may take 𝑏max ∼ 𝑟𝑑 because collisions between particles at distances
larger than 𝑟𝑑 will result in extremely small deflections. It follows
that log𝛬 ∼ 14 so that we obtain a rough estimate of the collision
frequency 𝜈𝑐 ∼ 1 s−1, implying that the typical time interval after which
a particle experiences a binary Coulomb scattering is 𝜏𝑐 ∼ 1 s. On the
ther hand, experimental evidence [3,51] suggests that the electron
lasma achieves a self-organized equilibrium state characterized by an
nhomogeneous density profile after a relaxation time 𝜏𝑟 ∼ 0.1 𝑠 < 𝜏𝑐 .
ence, the present system can be characterized as ‘collisionless’, in the

ense that binary Coulomb scatterings cannot provide the dissipative
echanism by which the electron plasma reaches thermal equilibrium.

Let us see how the theory developed in the previous sections can
e applied to understand the behavior of such electron plasma. First,
bserve that in the present setting the cyclotron frequency is

𝑐 =
𝑒𝐵
𝑚

∼ 1011 Hz. (116)

e know from experiments [3,51] that the spectrum of electromagnetic
luctuations arising during the relaxation of the system is bounded by
uch lower frequencies. In particular, denoting with 𝜈𝑓 the frequency

f electromagnetic fluctuations, one finds 𝜈𝑓 ≪ 105 Hz ≪ 𝜔𝑐 . Hence,
we may safely assume that charged particles preserve their magnetic
moment 𝜇, and charged particle motion is appropriately described by
guiding center dynamics [55]. We remark that this holds true because
the system is collisionless, and fluctuations are much slower than
the period of adiabatic motion [56]. It is customary to use the set
of coordinates

(

𝜇, 𝑣∥, 𝑥, 𝑦, 𝑧, 𝜗𝑐
)

to span the phase space of a charged
particle, where 𝑣∥ denotes the component of the particle velocity along
the magnetic field, (𝑥, 𝑦, 𝑧) Cartesian coordinates in R3 corresponding
o the reference frame in the laboratory, and 𝜗𝑐 the phase of the
yclotron gyration. In this setting, the aforementioned conservation
f the magnetic moment 𝜇 is associated with a Noether symmetry
f the guiding center Hamiltonian 𝐻𝑔𝑐 , which is independent of 𝜗𝑐 ,

i.e. 𝜇̇ ∝ −𝜕𝜗𝑐𝐻𝑔𝑐 = 0. The phase 𝜗𝑐 can thus be eliminated from the
description of the system, resulting in a reduced 5-dimensional phase
space 𝒛 =

(

𝜇, 𝑣∥, 𝑥, 𝑦, 𝑧
)

. The corresponding Poisson tensor has the
following form [55],

𝑔𝑐 =
[

0 𝟎14
𝟎41  𝜇

𝑔𝑐 ,

]

(117)

Here, 𝟎𝑖𝑗 is the null matrix of dimension 𝑖 × 𝑗 and  𝜇
𝑔𝑐 a 4-dimensional

matrix (see eq. (3.28) of [55] for the expression of  𝜇
𝑔𝑐). Observe that

𝜇 is a Casimir invariant, i.e. 𝑔𝑐𝜕𝒛𝜇 = 𝟎. Furthermore, the invariant
measure (preserved phase space volume) is given by

𝑑𝛺 = 𝐵 𝑑𝒛 = 𝐵 𝑑𝜇𝑑𝑣∥𝑑𝑥𝑑𝑦𝑑𝑧. (118)

More precisely, when the magnetic field 𝑩 has non-vanishing helicity
density 𝑩 ⋅ ∇ × 𝑩 ≠ 0, the above formula must be corrected by a
actor depending on such helicity density. Nevertheless, we shall omit
his correction to simplify the exposition, and observe that the same
ogic applies in either case. We also remark that a dipole magnetic
ield is a vacuum field ∇ × 𝑩 = 𝟎 outside the current loop generating
t, and therefore the helicity density vanishes in the region occupied
12
by the plasma. The formula (118) is therefore exact for the case of a
self-organizing plasma within a planetary magnetosphere.

Now consider a cluster of 𝑁 electrons performing guiding center
dynamics 𝒛̇ = 𝑔𝑐𝜕𝒛𝐻𝑔𝑐 within the magnetic field 𝑩, and suppose that
they share roughly the same value of magnetic moment 𝜇, parallel
velocity 𝑣∥, and spatial position (𝑥, 𝑦, 𝑧) (we will make this statement
more precise later). We may regard such cluster of particles as a
mesoscopic particle with mass 𝑁𝑚, charge −𝑁𝑒, magnetic moment 𝑁𝜇,
and energy 𝑁𝐻𝑔𝑐 , located at the position of the center of mass. The idea
is now to consider binary Coulomb collision of clusters of electrons.
Indeed, if the cluster size 𝑟𝑁 is large enough, we expect the collision
frequency to grow accordingly. Then, collisions of electron clusters
can provide a fast enough dissipative mechanism to thermalize the
system. For this construction to hold, the number of particles contained
within a sphere of radius 𝑟𝑁 must be large, i.e. 𝑟𝑁 ≫ 𝑟𝑑 . At the same
time, these clusters must be smaller than the system size, 𝑟𝑁 ≪ 𝐿.
n the present setting, these conditions can be satisfied by choosing
𝑁 ∼ 10−2 m. Then, the number of particles contained in a sphere of
adius 𝑟𝑁 is 𝑁 = 4𝜋𝑟3𝑁𝑛∕3 ∼ 4×106 ≫ 1. This number takes into account
lectrons having different magnetic momenta and parallel velocities.
owever, we may assume that the system has been initially rearranged

o that each cluster contains electrons with roughly the same magnetic
oment and parallel velocity (otherwise, one could simply consider a

mall fraction of 𝑁 , such as 𝑁 ′ = 10−3 N ∼ 4 × 103, as representative
lectron number for an electron cluster). Furthermore, the distance
etween the centers of mass of two clusters of electrons at which binary
oulomb collisions result in a significant change in energy is

𝑁𝑐 =
𝑁2𝑒2

4𝜋𝜖0𝑁𝑘𝐵𝑇𝑒
= 𝑁𝑟𝑐 ∼ 4 × 10−4 m. (119)

Note that, since 𝑟𝑁 ≫ 𝑟𝑁𝑐 , this implies that for such large deflections to
occur the two clusters must penetrate each other. Next, the frequency of
collisions can be estimated as in the case of electron–electron collisions,

𝜈𝑁𝑐 ∼
𝑁4𝑒4 log𝛬𝑁

12𝜋3∕2𝜖20𝑁
1∕2𝑚1∕2

𝑛
𝑁

𝑁−3∕2𝛽3∕2𝑒 = 𝑁𝜈𝑐 ∼ 2×105 log𝛬𝑁 𝑠−1, (120)

where the Coulomb logarithm for the process can be approximated as
log𝛬𝑁 ∼ log

(

𝑟𝑁𝑑∕𝑟𝑁𝑐
)

∼ 4, with 𝑟𝑁𝑑 = (𝑛∕𝑁)−1∕3 ∼ 1.6× 10−2 m ≫ 𝑟𝑁𝑐
the typical cluster distance. We therefore obtain a rough estimate for
the collision frequency, 𝜈𝑁𝑐 ∼ 106 s−1, and a collision time 𝜏𝑁𝑐 ∼ 10−6

s, which is now much shorter than the relaxation time 𝜏𝑟 ∼ 0.1 s.
Let 𝑓

(

𝜇, 𝑣∥, 𝑥, 𝑦, 𝑧, 𝑡
)

denote the distribution function of electron
clusters defined with respect to the invariant measure (preserved phase
space volume) (118). The setting described above suggests that the
appropriate evolution equation for the system is given by Eq. (56)
where the interaction tensor 𝛱 is that associated with the Coulomb
potential energy 𝑉 = 𝑁2𝑒2∕4𝜋𝜖0 ||𝒒1 − 𝒒2||, with 𝒒 = (𝑥, 𝑦, 𝑧), while
the Poisson tensor is that associated with guiding center dynamics,
i.e. the operator 𝑔𝑐 of expressed in a coordinate system with volume
lement (118). For example, one can use the set of coordinates 𝒛′ =
(

𝜇, 𝐵𝑣∥, 𝑥, 𝑦, 𝑧
)

, or any suitable magnetic coordinate system such as
𝒛′ =

(

𝜇, 𝑣∥,𝓁, 𝛹 , 𝜃
)

where 𝓁 is a length coordinate along the magnetic
field (provided that it exists), 𝛹 the flux function, and 𝜃 an angle
variable such that 𝑩 = ∇𝛹 ×∇𝜃. The expression of 𝛱 for the Coulomb
interaction will be discussed in more detail in Section 6, where the
relationship between the present theory and the Landau model is
discussed. What is important here is the form of thermal equilibrium
predicted by Eq. (73). Indeed, recalling that 𝜇 is a Casimir invariant,
the equilibrium distribution function becomes

𝑓 = exp
{

−𝛽𝑁𝐻𝑔𝑐 + 𝑔 (𝜇)
}

. (121)

The guiding center Hamiltonian can be written as 𝐻𝑔𝑐 =
1
2𝑚𝑣

2
∥ + 𝜇𝐵 −

𝑒𝛷 − 1
2𝑚𝒗

2
𝑬 , where 𝛷 is the electric potential and 𝒗𝑬 = 𝑩 × ∇𝛷∕𝐵2 the

𝑬 × 𝑩 velocity. On the other hand, the form of the function 𝑔 𝜇 will
( )
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generally depend on the initial distribution of magnetic moment. Nev-
ertheless, it is useful to examine the linear case 𝑔 = − log𝑍−𝛾𝑁𝜇, with
𝑍 and 𝛾 positive real constants. This choice can be interpreted in two
ways: small departure from Maxwell–Boltzmann statistics, where the
function 𝑔 is expanded in powers of the dimensionless quantity 𝛾𝑁𝜇,
or a grand canonical ensemble (see e.g. [6]) in which the equilibrium
state is obtained by maximizing entropy 𝑆 = − ∫ 𝑓 log 𝑓 𝑑𝛺 under the
constraint that total particle number 𝑁tot = ∫ 𝑓𝑁 𝑑𝛺, total energy H =
∫ 𝑓𝑁𝐻𝑔𝑐 𝑑𝛺, and total magnetic moment 𝑀 = ∫ 𝑓𝑁𝜇 𝑑𝛺 are constant,
according to the variational principle 𝛿

(

𝑆 − 𝛼𝑁tot − 𝛽H − 𝛾𝑀
)

with
agrange multipliers 𝛼, 𝛽, and 𝛾 such that 𝑍 = 𝑒1+𝛼𝑁 . In either case,
he equilibrium distribution function (121) becomes

= 1
𝑍

exp
{

−𝛽𝑁
[ 1
2
𝑚
(

𝑣2∥ − 𝒗2𝑬
)

− 𝑒𝛷
]

− 𝜇𝑁 (𝛽𝐵 + 𝛾)
}

. (122)

Recalling (118), the corresponding electron cluster spatial density
𝜌lab (𝑥, 𝑦, 𝑧) in the laboratory frame can therefore be evaluated as

𝜌lab = ∫R
𝑑𝑣∥ ∫

+∞

0
𝑑𝜇𝑓𝐵

= 1
𝑍

√

2𝜋
𝛽𝑁3𝑚

exp
{

𝛽𝑁
[ 1
2
𝑚𝒗2𝑬 + 𝑒𝛷

]} 𝐵
𝛽𝐵 + 𝛾

. (123)

Since the electron cluster temperature 𝛽−1 is expected to be related to
the electron temperature 𝛽−1𝑒 according to 𝛽𝑒 = 𝑁𝛽, and observing that
lab is normalized to unity through the constant 𝑍, we arrive at the
quilibrium electron spatial density in the Cartesian reference frame
𝑥, 𝑦, 𝑧)

𝑒
lab =

1
𝑍

√

2𝜋
𝛽𝑒𝑚

exp
{

𝛽𝑒
[ 1
2
𝑚𝒗2𝑬 + 𝑒𝛷

]} 𝐵
𝛽𝑒𝐵 +𝑁𝛾

. (124)

In addition to the usual Boltzmann factor, the density (124) exhibits
spatial inhomogeneity due to the conservation of the magnetic moment,
which is expressed by the fact that 𝛾 ≠ 0. In particular, 𝜌lab will be
higher in regions where the modulus 𝐵 is stronger. Other adiabatic
invariants, which would appear as additional Casimir invariants of the
Poisson tensor, would introduce additional structure to the equilib-
rium distribution function and the corresponding laboratory density.
For example, it is known [6,23,53] that in the context of planetary
magnetospheres where 𝑩 is essentially a dipole magnetic field, adding
conservation of bounce action 𝑗∥ to the above model results in con-
centration of charged particles along the equator with corresponding
self-organization of radiation belt-type structures.

We conclude this part by observing that the self-organized density
profile (124) cannot be obtained as a steady solution of the Vlasov
model or the Landau kinetic equation for an ensemble of charged par-
ticles. Indeed, in both cases the distribution function is restricted to a
function of the charged particle Hamiltonian, 𝑓 = 𝑓

(

1
2𝑚𝒗

2 − 𝑒𝛷
)

. This
example therefore shows that it is crucial to embed the noncanonicality
of a system into its kinetic equation in order to appropriately describe
relaxation processes occurring over shorter time scales than those of
binary collisions.

5.4. Relaxation of a collisionless system of self-gravitating bodies

A similar construction to the one obtained for a self-organizing
collisionless magnetized plasma can be applied to a system of self-
gravitating bodies that are separated by such large distances that binary
gravitational interactions do not occur over a given time scale of
interest. This situation is often encountered in astrophysics. A well
known example is the formation of galactic structures, where the stellar
distribution suggests the existence of an equilibrium state that cannot
be however explained in terms of binary collisions [5].

A possible approach to understand the creation of such equilibria
is to exploit the Vlasov equation, because binary interactions are so
unlikely that the correlation term 𝑓1𝑓2 − 𝑓12 on the right-hand side of
the first equation of the BBGKY hierarchy (3) can be neglected. Then,
13
the dynamics of the system is driven only by the collective gravitational
potential 𝛷 according to the Vlasov equation. In this context, equilibria
are understood in terms of the coarse-grained distribution function,
i.e. the distribution function resulting from an averaging process of
the fine-grained distribution function (which obeys the gravitational
Vlasov equation) reflecting the finite resolution used to resolve the
phase space [5].

We suggest that an accurate kinetic description of collisionless re-
laxation of self-gravitating bodies can be obtained through the derived
Eq. (56), where 𝑓 denotes the distribution of clusters of such bodies.
To see this, consider the case of an ensemble of stars with typical mass
𝑀⊙ = 2 × 1030 kg and average velocity 𝑣⊙ ∼ 2 × 104 ms−1 gravitating
within a galaxy (see [57] for details on the values of physical param-
eters used here and in the paragraphs below). The distance at which
binary gravitational collisions result in energy changes comparable
with the kinetic energy of a star is

𝑟𝑐 =
2𝐺𝑀⊙

𝑣2⊙
∼ 7 × 1011 m. (125)

On the other hand, the typical distance among stars in a galaxy is
𝑟𝑑 ∼ 𝑛−1∕3⊙ ∼ 3 × 1016 m ≫ 𝑟𝑐 , where 𝑛⊙ ∼ 3 × 10−50 m−3 is the star
density. Furthermore, the frequency of binary gravitational collisions
can be estimated as

𝜈𝑐 = 𝑛⊙𝜎𝑣⊙ ∼ 0.5 × 10−23 s−1, (126)

where 𝜎 ∼ 1022 m2 is an effective scattering cross-section.
Next, consider a cluster of stars in a spherical region of radius 𝑟𝑁 ∼

1018 m, with 𝑟𝑐 ≪ 𝑟𝑑 ≪ 𝑟𝑁 ≪ 𝐿 where 𝐿 ∼ 1021 m is the spatial scale
(radial size) of the galaxy. The number of stars contained in a cluster is
𝑁 = 4𝜋𝑟3𝑁𝑛⊙∕3 ∼ 1.2 × 105. Now the distance at which the star cluster
kinetic energy is significantly modified by a gravitational interaction
with another cluster of stars is 𝑟𝑁𝑐 = 𝑁𝑟𝑐 ∼ 8 × 1016 m. In addition, a
lower bound for the frequency of gravitational collisions between star
clusters can then be estimated by using the cluster physical section as
scattering cross-section. We have

𝜈𝑁𝑐 ≥
𝑛⊙
𝑁

𝜋
(

2𝑟𝑁
)2 𝑣⊙ ∼ 10−13 s−1, (127)

which gives a time interval between collisions 𝜏𝑁𝑐 ∼ 1013 s. This value
is much smaller than the age of the universe 𝜏𝑟 ∼ 0.4×1018 s, which can
be taken as the order of magnitude of the relaxation time for the system.
Denoting with 𝑓 the distribution function of star clusters in the phase
space (usually the invariant measure is conveniently expressed as 𝑑𝒛 =
𝑟2𝑑𝑣𝑟𝑑𝑟𝑑𝜔𝑑𝜑𝑑𝑣𝑧𝑑𝑧, where (𝑟, 𝜑, 𝑧) denote cylindrical coordinates and
𝑣𝑟, 𝜔, and 𝑣𝑧 represent radial, angular, and vertical velocities), we may
therefore represent the evolution of 𝑓 with the aid of Eq. (56) where
𝛱 is the interaction tensor for the gravitational force and the Poisson
tensor star is tailored for the specific dynamics under consideration.
For example, if star dynamics is restricted to the galactic plane 𝑧 = 0,
we expect the distance from the galactic plane |𝑧| to be a Casimir
invariant such that star𝜕𝒛 |𝑧| = 𝟎. Similarly, if the total vertical angular
momentum 𝐿𝑧 = 𝑁 ∫ 𝑓𝓁𝑧 𝑑𝒛, with 𝓁𝑧 = 𝑀⊙𝜔𝑟2, is preserved by the
relaxation process (this is the case of binary gravitational encounters
on the plane 𝑧 = 0), the interaction tensor associated with the right-
hand side of Eq. (56) possesses a corresponding kernel (recall Eqs. (75)
and (76)). These considerations therefore lead to equilibrium solutions
of Eq. (56) of the type

𝑓 = 1
𝑍

exp
{

−𝛽𝑁𝐻⊙ − 𝛾𝑁 |𝑧| − 𝜂𝑁𝓁𝑧
}

, (128)

ith corresponding spatial star cluster density 𝜌𝑙𝑎𝑏 (𝑥, 𝑦, 𝑧) in the Carte-
ian frame (𝑥, 𝑦, 𝑧) given by

𝑙𝑎𝑏 =
1
(

2𝜋
)3∕2

exp

{

−𝛽𝑁𝛷 − 𝛾𝑁 |𝑧| +
𝜂2𝑁𝑀⊙ 𝑟2

}

, (129)

𝑍 𝛽𝑁𝑀⊙ 2𝛽
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where we used the expression for the energy of a star 𝐻⊙ = 1
2𝑀⊙𝒗2+𝛷,

with 𝛷 the gravitational potential energy. We note that, due to the at-
tractive nature of the gravitational force, one expects that lim𝑟→+∞ 𝜌𝑙𝑎𝑏 =
0. This implies that 𝛷, which is determined by the Poisson equation
𝛥𝛷 = 4𝜋𝐺𝑀⊙

(

𝑁𝑀⊙𝑁cl𝜌𝑙𝑎𝑏 + 𝑠𝑒𝑥𝑡
)

, with 𝐺 the gravitational constant,
𝑁cl the total number of clusters in the ensemble, and 𝑠𝑒𝑥𝑡 any external
source of gravity (e.g. a central black hole sustaining the Keplerian
rotation of the galactic disk), must cancel the divergence of the centrifu-
gal term proportional to 𝜂2 in (129) at large radii. For completeness,
we also emphasize that Eq. (129) does not take into account general
relativistic effects. Due to the large masses and high kinetic energies
involved, these effects are expected to sensibly modify the phase space
structure (in particular, the invariant measure), and thus the observed
spatial density.

6. Binary coulomb collisions and the Landau limit

The purpose of this section is to show that the collision operator
(54) reduces to the Landau collision operator [11,12] when charged
particles interact via binary Coulomb collisions resulting in small de-
flections of the particle orbits. First, recall that in the case of binary
Coulomb collisions the scattering volume density per unit time  can be
written in the form of Eq. (35). Substituting this expression into (54),
and noting that  = 𝑠 is the symplectic matrix in canonical phase
space (𝒑, 𝒒), one thus obtains


(

𝑓1, 𝑓2
)

=
𝜏2𝑐
2𝑚6

𝜕
𝜕𝒑1

⋅
[

∫ 𝑓1𝑓2𝜎 |

|

𝒗1 − 𝒗2|| 𝒑̇1𝒑̇1

⋅
(

𝜕 log 𝑓1
𝜕𝒑𝟏

−
𝜕 log 𝑓2
𝜕𝒑2

)

𝛿
(

𝒒1 − 𝒒2
)

𝑑𝒑′1𝑑𝒑
′
2𝑑𝒑2𝑑𝒒2

]

,
(130)

here 𝒗1 = 𝒑1∕𝑚 and 𝒗2 = 𝒑2∕𝑚, with 𝑚 the particle mass. A further
ntegration with respect to 𝒒2 leaves only contributions due collisions
ccurring at the same spatial position 𝒒1 = 𝒒2. Hence, from this point
n 𝑓1 = 𝑓1

(

𝒑1, 𝒒1, 𝑡
)

and 𝑓2 = 𝑓2
(

𝒑2, 𝒒1, 𝑡
)

. Furthermore, due to the
hort time scale 𝜏𝑐 of the interaction, the quantity 𝜏𝑐 𝒑̇1 is nothing but
he total change of the momentum 𝒑1 due to the collision, i.e. 𝜏𝑐 𝒑̇1 =
𝒑1 = 𝒑′1 − 𝒑1 = 𝑚

(

𝒗′1 − 𝒗1
)

= 𝑚𝛿𝒗1, where we introduced the quantity
𝒗1 = 𝒗′1 − 𝒗1. Eq. (130) therefore becomes

(

𝑓1, 𝑓2
)

=1
2

𝜕
𝜕𝒗1

⋅
[

∫ 𝑓1𝑓2𝜎 |

|

𝒗1 − 𝒗2|| 𝛿𝒗1𝛿𝒗1

⋅
(

𝜕 log 𝑓1
𝜕𝒗𝟏

−
𝜕 log 𝑓2
𝜕𝒗2

)

𝑚3𝑑𝒗′1𝑑𝒗
′
2𝑑𝒗2

]

,
(131)

ince 𝑓1 and 𝑓2 are defined with respect to the phase space volumes
𝒑1𝑑𝒒1 = 𝑚3𝑑𝒗1𝑑𝒒1 and 𝑑𝒑2𝑑𝒒2 = 𝑚3𝑑𝒗2𝑑𝒒2 respectively, it is con-
enient to consider the corresponding distributions in velocity space,
.e. from now on 𝑓1 = 𝑓1

(

𝒗1, 𝒒1
)

= 𝑚3𝑓1
(

𝒑1, 𝒒1
)

and similarly for 𝑓2.
t readily follows that the associated collision operator becomes
(

𝑓1, 𝑓2
)

=1
2

𝜕
𝜕𝒗1

⋅
[

∫ 𝑓1𝑓2𝜎 |

|

𝒗1 − 𝒗2|| 𝛿𝒗1𝛿𝒗1

⋅
(

𝜕 log 𝑓1
𝜕𝒗𝟏

−
𝜕 log 𝑓2
𝜕𝒗2

)

𝑑𝒗′1𝑑𝒗
′
2𝑑𝒗2

]

.
(132)

or a binary Coulomb collision the scattering cross-section can be
implified according to

(

𝒗1, 𝒗2; 𝒗′1, 𝒗
′
2
)

𝑑𝒗′1𝑑𝒗
′
2 =

𝑑𝜎 (𝑢, 𝜒)
𝑑𝛺

𝑑𝛺, 𝑑𝜎
𝑑𝛺

= 1
4

(

𝑒2

2𝜋𝜖0𝑚𝑢2

)2 1
sin4 (𝜒∕2)

,

(133)

where 𝑑𝜎∕𝑑𝛺 is the differential scattering cross-section, 𝑢 the modulus
of the relative velocity 𝒖 = 𝒗1 − 𝒗2, 𝑑𝛺 = sin𝜒𝑑𝜒𝑑𝜙, 𝜒 the deflection
angle of the relative velocity 𝒖 caused by the collision, 𝜙 an angle
determining the plane of the collision, 𝑒 the particle charge, and 𝜖0 the
vacuum permittivity. Furthermore, conservation of total momentum
14
implies that the change in relative velocity 𝒖 satisfies 𝛿𝒖 = 2𝛿𝒗1. Hence,


(

𝑓1, 𝑓2
)

=1
8

(

𝑒2

4𝜋𝜖0𝑚

)2 𝜕
𝜕𝒗1

⋅

[

∫ 𝑓1𝑓2
𝛿𝒖𝛿𝒖

𝑢3 sin4 (𝜒∕2)

⋅
(

𝜕 log 𝑓1
𝜕𝒗𝟏

−
𝜕 log 𝑓2
𝜕𝒗2

)

𝑑𝒗2𝑑𝛺
]

,

(134)

We must now evaluate (134) when Coulomb collisions result in small
deflections, i.e. 𝜒 ≪ 1. Since the modulus 𝑢 is preserved during a
collision, the relative velocity 𝒖′ = 𝒖 + 𝛿𝒖 after the collision satisfies

𝒖′ ⋅ 𝒖
𝑢2

= cos𝜒,
|

|

𝒖′ × 𝒖|
|

𝑢
= 𝑢 sin𝜒. (135)

Therefore, denoting with 𝒏1 and 𝒏2 unit vectors such that
(

𝒖∕𝑢,𝒏1,𝒏2
)

efines an orthonormal set of basis vectors, we may write

𝒖 = (cos𝜒 − 1) 𝒖 + 𝑢 sin𝜒
(

cos𝜙𝒏1 + sin𝜙𝒏2
)

. (136)

xpanding trigonometric functions of the deflection angle 𝜒 , at leading
rder one thus finds

𝛿𝒖𝛿𝒖
sin4 (𝜒∕2)

sin𝜒𝑑𝜒𝑑𝜙 ≈ 16𝜋
(

𝑢2𝐼 − 𝒖𝒖
)

log
(

𝜒max
𝜒min

)

, (137)

where 𝜒max and 𝜒min denote the maximum and minimum angles of
deflection that are allowed, and 𝐼 denotes the identity matrix. In
conclusion, the collision operator (134) reduces to the Landau collision
operator


(

𝑓1, 𝑓2
)

=2𝜋
(

𝑒2

4𝜋𝜖0𝑚

)2
log

(

𝜒max
𝜒min

)

𝜕
𝜕𝒗1

⋅
[

∫ 𝑓1𝑓2𝑢
−1

(

𝐼 − 𝒖𝒖
𝑢2

)

⋅
(

𝜕 log 𝑓1
𝜕𝒗1

−
𝜕 log 𝑓2
𝜕𝒗2

)

𝑑𝒗2
]

.

(138)

For completeness, we recall that the quantity log𝛬 = log
(

𝜒max
𝜒min

)

is
he Coulomb logarithm, and observe that the interaction tensor 𝛱
ncountered in (53) has been reduced to the projector 𝐼 − 𝒖𝒖∕𝑢2 onto

the space orthogonal to the relative velocity 𝒖 multiplied by 1∕𝑢. This
is the reason why in this setting the Maxwell–Boltzmann distribution
𝑓 ∝ exp

{

−𝛽
(

𝑚𝒗2∕2 +𝛷 (𝒙)
)}

belongs to the kernel of 𝛱 , and thus
rovides an equilibrium solution of the evolution Eq. (56).

In the remaining part of this section we wish to verify the identity
48), which was used to simplify the expansion of the collision inte-
ral, in the case of binary Coulomb collisions with small deflections.
ecalling Eq. (35), the integral on the left-hand side of Eq. (48) can be
ritten as
[

𝛿𝒛 − 1
2

(

𝜕
𝜕𝒛1

− 𝜕
𝜕𝒛2

)

⋅ (𝛿𝒛𝛿𝒛)
]

𝑑𝒛′1𝑑𝒛
′
2

=𝑚𝛿
(

𝒒1 − 𝒒2
)

∫

[

𝜎𝑢𝛿𝒗1 −
1
2

(

𝜕
𝜕𝒗1

− 𝜕
𝜕𝒗2

)

⋅
(

𝜎𝑢𝛿𝒗1𝛿𝒗1
)

]

𝑑𝒗′1𝑑𝒗
′
2

=𝑚𝜅
2

𝛿
(

𝒒1 − 𝒒2
)

[

∫
𝛿𝒖

𝑢3 sin4 (𝜒∕2)
𝑑𝛺

− 1
4

(

𝜕
𝜕𝒗1

− 𝜕
𝜕𝒗2

)

⋅ ∫
𝛿𝒖𝛿𝒖

𝑢3 sin4 (𝜒∕2)
𝑑𝛺

]

≈𝑚𝜅
2

𝛿
(

𝒒1 − 𝒒2
)

[

−2 𝒖
𝑢3 ∫

𝑑𝛺
sin2 (𝜒∕2)

− 1
2

𝜕
𝜕𝒖

⋅ 16𝜋𝑢−1
(

𝐼 − 𝒖𝒖
𝑢2

)

log
(

𝜒max
𝜒min

)]

=8𝜋𝑚𝜅𝛿
(

𝒒1 − 𝒒2
)

log
(

𝜒max
𝜒min

)

𝑢−3 (−𝒖 + 𝒖) = 𝟎,

(139)

where we set 𝜅 =
(

𝑒2∕2𝜋𝜖0𝑚
)2 ∕4 and approximated integrals involving

the small deflection angle 𝜒 by Taylor expansion around 𝜒 = 0.
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7. Metriplectic structure

The aim of this section is to show that the derived collision op-
erator (52) for collisions occurring in noncanonical phase spaces and
the corresponding evolution Eqs. (55a) and (55b) for the distribution
functions exhibit a metriplectic structure [33,34], i.e. an algebraic
bracket formalism joining Hamiltonian and dissipative dynamics in
consistency with the first and second laws of thermodynamics. This
result corroborates the idea that the metriplectic bracket encapsulates
the fundamental geometric structure of the phase space of mechanical
systems that are subject to dissipation, in the same way the Poisson
bracket characterizes the phase space of ideal systems. To this end, we
first review some basic aspects pertaining to the notion of metriplectic
bracket (the definitions given below can be found in [37]).

Let X denote a vector space over R. A Poisson bracket is a binary
operation {⋅, ⋅}∗ ∶ X∗ × X∗ → X∗ on the set X∗ of differentiable
unctionals 𝐹 ∶ X → R satisfying the following axioms

{𝑎𝐹 + 𝑏𝐺,𝐻}∗ = 𝑎 {𝐹 ,𝐻}∗ + 𝑏 {𝐺,𝐻}∗ ,

{𝐻, 𝑎𝐹 + 𝑏𝐺}∗ = 𝑎 {𝐻,𝐹 }∗ + 𝑏 {𝐻,𝐺}∗ , (140a)

{𝐹 , 𝐹 }∗ = 0, (140b)

{𝐹 ,𝐺}∗ = −{𝐺, 𝐹 }∗ , (140c)

{𝐹𝐺,𝐻}∗ = 𝐹 {𝐺,𝐻}∗ + {𝐹 ,𝐻}∗ 𝐺, (140d)
{

𝐹 , {𝐺,𝐻}∗
}

∗ +
{

𝐺, {𝐻,𝐹 }∗
}

∗ +
{

𝐻, {𝐹 ,𝐺}∗
}

∗ = 0, (140e)

for all 𝑎, 𝑏 ∈ R and 𝐹 ,𝐺,𝐻 ∈ X∗. The asterisk appearing in {⋅, ⋅}∗
s used to distinguish this Poisson bracket, which acts on elements of
∗, from the Poisson bracket {⋅, ⋅} ∶ X × X → X acting on functions
, 𝑔 ∈ X as in Eq. (32). For the purpose of the present study, we
ay take X = 𝐶∞ (𝛺). The five axioms are referred to as bilinearity,

lternativity, antisymmetry (which follows from the first two axioms
y evaluating {𝐹 + 𝐺, 𝐹 + 𝐺}), Leibniz rule, and Jacobi identity. The
eaning of these axioms is the following: bilinearity ensures that the
oisson bracket defines an algebra over R, alternativity physically
xpresses conservation of energy H since Ḣ = {H,H} = 0, the Leibniz
ule implies that the Poisson bracket behaves as a differential operator,
hile the Jacobi identity assigns the phase space structure (the Poisson
racket defines a Lie algebra).

While the Poisson bracket describes ideal dynamics, dissipative
ynamics can be represented with the aid of a dissipative bracket
⋅, ⋅]∗ ∶ X∗ × X∗ → X∗, which is a binary operation satisfying the
ollowing axioms:

[𝑎𝐹 + 𝑏𝐺,𝐻]∗ = 𝑎 [𝐹 ,𝐻]∗ + 𝑏 [𝐺,𝐻]∗ ,

[𝐻, 𝑎𝐹 + 𝑏𝐺]∗ = 𝑎 [𝐻,𝐹 ]∗ + 𝑏 [𝐻,𝐺]∗ , (141a)

[𝐹 , 𝐹 ]∗ ≥ 0, (141b)

[𝐹 ,𝐺]∗ = [𝐺, 𝐹 ]∗ , (141c)

[𝐹𝐺,𝐻]∗ = 𝐹 [𝐺,𝐻]∗ + [𝐹 ,𝐻]∗ 𝐺, (141d)

for all 𝑎, 𝑏 ∈ R and 𝐹 ,𝐺,𝐻 ∈ X∗. These axioms are bilinearity, non-
egativity, symmetry, and Leibniz rule. We observe that non-negativity
s associated with entropy growth because within the metriplectic for-
alism the evolution of entropy 𝑆 obeys 𝑆̇ = [𝑆, 𝑆]∗ ≥ 0. Furthermore,
e will see that the symmetry axiom can be physically interpreted in

elation to the symmetry of the microscopic process at the origin of
issipation.

A metriplectic bracket (⋅, ⋅, ⋅)∗ ∶ X∗ × X∗ × X∗ → X∗ is a ternary
peration combining ideal and dissipative dynamics according to [33]
𝑑𝐹
𝑑𝑡

= (𝐹 , 𝑆,H)∗ = [𝐹 , 𝑆]∗ + {𝐹 ,H}∗ , (142)

here the generating functionals 𝑆,H ∈ X∗ physically represent the
ntropy and the energy of the system respectively, while 𝐹 ∈ X∗ is a
hysical observable. In order to ensure the consistency of metriplectic
15
mechanics (142) with the laws of thermodynamics, the entropy 𝑆 and
the energy H must satisfy
𝑑𝑆
𝑑𝑡

= (𝑆, 𝑆,H)∗ = [𝑆, 𝑆]∗ + {𝑆,H}∗ ≥ 0, (143a)

𝑑H
𝑑𝑡

= (H, 𝑆,H)∗ = [H, 𝑆]∗ = 0. (143b)

sufficient set of consistency conditions is therefore given by

𝑆,H}∗ = 0, [𝑆,H]∗ = 0. (144)

he conditions (144) can be identically satisfied by choosing the en-
ropy 𝑆 to be a Casimir invariant of the Poisson bracket and the energy

a Casimir invariant of the dissipative bracket:

𝑆,H}∗ = 0 ∀H ∈ X∗, [𝑆,H]∗ = 0 ∀𝑆 ∈ X∗. (145)

hen Eq. (145) is satisfied, a single generating function (free energy)
= 𝑆 − 𝛽H, with 𝛽 a normalization parameter physically represent-

ng the inverse temperature of the system, can be used to generate
ynamics:
𝑑𝐹
𝑑𝑡

= (𝐹 ,𝛴)∗ = −𝛽−1 {𝐹 ,𝛴}∗ + [𝐹 ,𝛴]∗ . (146)

t turns out that Eqs. (55a) and (55b) can be written in the form (146).
n particular, for this system the Poisson bracket is given by

𝐹 ,𝐺}∗ =∫ 𝑓1

{

𝛿𝐹
𝛿𝑓1

, 𝛿𝐺
𝛿𝑓1

}

1
𝑑𝒛1 + ∫ 𝑓2

{

𝛿𝐹
𝛿𝑓2

, 𝛿𝐺
𝛿𝑓2

}

2
𝑑𝒛2

=∫ 𝑓1
𝜕
𝜕𝒛1

(

𝛿𝐹
𝛿𝑓1

)

⋅
[

1 ⋅
𝜕
𝜕𝒛1

(

𝛿𝐺
𝛿𝑓1

)]

𝑑𝒛1

+ ∫ 𝑓2
𝜕
𝜕𝒛2

(

𝛿𝐹
𝛿𝑓2

)

⋅
[

2 ⋅
𝜕
𝜕𝒛2

(

𝛿𝐺
𝛿𝑓2

)]

𝑑𝒛2.

(147)

Indeed, one can verify that
{

𝑓1
(

𝒛′1, 𝑡
)

,H12
}

∗ = ∫ 𝑓1
{

𝛿
(

𝒛′1 − 𝒛1
)

,𝐻1 +𝛷1
}

1 𝑑𝒛1. (148)

Integrating by parts, for any point 𝒛1 ∈ 𝛺 one thus obtains
{

𝑓1
(

𝒛1, 𝑡
)

,H12
}

∗ = −
{

𝑓1,𝐻1 +𝛷1
}

1 . (149)

Furthermore, the dissipative bracket can be written as

[𝐹 ,𝐺]∗ = −∫ 𝑓1𝑓2𝛱𝑗𝑘

[

 𝑖𝑗
1

𝜕
𝜕𝑧𝑖1

(

𝛿𝐹
𝛿𝑓1

)

−  𝑖𝑗
2

𝜕
𝜕𝑧𝑖2

(

𝛿𝐹
𝛿𝑓2

)

]

×

[

 𝑘𝑚
1

𝜕
𝜕𝑧𝑚1

(

𝛿𝐺
𝛿𝑓1

)

−  𝑘𝑚
2

𝜕
𝜕𝑧𝑚2

(

𝛿𝐺
𝛿𝑓2

)

]

𝑑𝒛1𝑑𝒛2. (150)

ndeed, using this expression gives

𝑓1
(

𝒛′1, 𝑡
)

, 𝑆12
]

∗ = − ∫ 𝑓1𝑓2𝛱𝑗𝑘

[

 𝑖𝑗
1

𝜕
𝜕𝑧𝑖1

𝛿
(

𝒛′1 − 𝒛1
)

]

×

(

 𝑘𝑚
2

𝜕 log 𝑓2
𝜕𝑧𝑚2

−  𝑘𝑚
1

𝜕 log 𝑓1
𝜕𝑧𝑚1

)

𝑑𝒛1𝑑𝒛2.

(151)

ntegrating by parts, for any point 𝒛1 ∈ 𝛺 one arrives at
[

𝑓1
(

𝒛1, 𝑡
)

, 𝑆12
]

∗

𝜕
𝜕𝒛1

⋅
[

𝑓11 ⋅ ∫ 𝑓2𝛱 ⋅
(

2 ⋅
𝜕 log 𝑓2
𝜕𝒛2

− 1 ⋅
𝜕 log 𝑓1
𝜕𝒛1

)

𝑑𝒛2
]

= 
(

𝑓1, 𝑓2
) (

𝒛1, 𝑡
)

.

(152)

We have therefore shown that Eqs. (55a) and (55b) have the metriplec-
tic structure [33] below
𝜕𝑓1
𝜕𝑡

=
(

𝑓1, 𝑆12,H12
)

∗ =
{

𝑓1,H12
}

∗ +
[

𝑓1, 𝑆12
]

∗ , (153a)
𝜕𝑓2
𝜕𝑡

=
(

𝑓2, 𝑆12,H12
)

∗ =
{

𝑓2,H12
}

∗ +
[

𝑓2, 𝑆12
]

∗ . (153b)

Furthermore, since 𝑆12 and H12 are Casimir invariants of the Poisson
bracket and the dissipative bracket respectively, these equations can
be cast in the form (146) with generating function 𝛴 = 𝑆 − 𝛽H .
12 12
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7.1. Relationship with the curvature-like framework of metriplectic 4-
bracket dynamics

Recently, a 4-bracket formalism describing dissipative dynamics
through curvature-like tensors has been proposed [58]. This framework
is inclusive, i.e. it includes the binary dissipative bracket discussed
above, and also elucidates certain geometric aspects of dissipation.

In finite dimensions, the 4-bracket acting on smooth functions
𝑓, 𝑔, ℎ,𝓁 ∈ 𝐶∞ (𝛺) is defined via a contravariant 4-tensor with com-
ponents 𝑅𝑖𝑗𝑘𝑙 according to

(𝑓, 𝑔;ℎ,𝓁) = 𝑅𝑖𝑗𝑘𝑙 𝜕𝑓
𝜕𝑧𝑖

𝜕𝑔
𝜕𝑧𝑗

𝜕ℎ
𝜕𝑧𝑘

𝜕𝓁
𝜕𝑧𝑙

. (154)

Here, the 4-tensor 𝑅𝑖𝑗𝑘𝑙 is also assumed to satisfy the symmetries

𝑅𝑖𝑗𝑘𝑙 = − 𝑅𝑗𝑖𝑘𝑙 , (155a)

𝑅𝑖𝑗𝑘𝑙 = − 𝑅𝑖𝑗𝑙𝑘, (155b)

𝑅𝑖𝑗𝑘𝑙 =𝑅𝑘𝑙𝑖𝑗 . (155c)

A 4-bracket satisfying the properties above and the positive semi-
definiteness condition (𝑓, 𝑔; 𝑓, 𝑔) ≥ 0 for all 𝑓, 𝑔 ∈ 𝐶∞ (𝛺) is called
minimal metriplectic. Using (154) and (155), one can verify that the
4-bracket is linear in its arguments, that it acts as a derivation on its
arguments, and that

(𝑓, 𝑔;ℎ,𝓁) = − (𝑔, 𝑓 ;ℎ,𝓁) , (156a)

(𝑓, 𝑔;ℎ,𝓁) = − (𝑓, 𝑔;𝓁, ℎ) , (156b)

(𝑓, 𝑔;ℎ,𝓁) = (ℎ,𝓁; 𝑓, 𝑔) . (156c)

If 𝑅𝑖𝑗𝑘𝑙 were the fully contravariant form of a Riemannian curvature
tensor, the first and second Bianchi identities

𝑅𝑖𝑗𝑘𝑙 + 𝑅𝑖𝑘𝑙𝑗 + 𝑅𝑖𝑙𝑗𝑘 = 0, (157a)

𝑅𝑖𝑗𝑘𝑙
;𝑚 + 𝑅𝑖𝑗𝑙𝑚

;𝑘 + 𝑅𝑖𝑗𝑚𝑘
;𝑙 = 0, (157b)

would provide additional structure to the 4-bracket. In particular, the
first Bianchi identity implies that

(𝑓, 𝑔;ℎ,𝓁) + (𝑓, ℎ;𝓁, 𝑔) + (𝑓,𝓁; 𝑔, ℎ) = 0, (158)

while the second Bianchi identity, whose precise role in the 4-bracket
theory has yet to be clarified, offers an analogy with the Jacobi identity
obeyed by Poisson tensors in Hamiltonian dynamics.

The dissipative bracket (150) can be written as a 4-bracket (⋅, ⋅; ⋅, ⋅)∗ ∶
X∗ ×X∗ ×X∗ ×X∗ → X∗ on X∗. To see this, define the 4-bracket acting
on 𝐹 ,𝐺,𝐻,𝐿 ∈ X∗

(𝐹 ,𝐺;𝐻,𝐿)∗

=
𝜏2𝑐
2 ∫ 𝑓1𝑓2𝛤 𝑖𝑗

1  𝑘𝑙
1 𝑃

[

𝐹𝑓
]

𝑖 𝑃
[

𝐺𝑓
]

𝑗 𝑃
[

𝐻𝑓
]

𝑘 𝑃
[

𝐿𝑓
]

𝑙 𝑑𝒛1𝑑𝒛2, (159)

here
[

𝐹𝑓
]

𝑖 =
𝜕
𝜕𝑧𝑖1

𝛿𝐹
𝛿𝑓1

− 𝜕
𝜕𝑧𝑖2

𝛿𝐹
𝛿𝑓2

. (160)

Recalling that by hypothesis on the spatial scale of the interaction
1 ≈ 2, and using the symmetry of the interaction potential energy
(17) and the expression of the interaction tensor (53), we find
(

𝐹 ,𝛷1;𝐺,𝛷2
)

∗ = [𝐹 ,𝐺]∗ . (161)

We observe that the 4-tensor 𝑅𝑖𝑗𝑘𝑙 in this setting is given by

𝑅𝑖𝑗𝑘𝑙 =  𝑖𝑗
1  𝑘𝑙

1 , (162)

hich satisfies the symmetries (155). It is worth mentioning that the
ossibility of decomposing general algebraic curvature tensors in terms
f symmetric and asymmetric 2-tensors is discussed in [59]. We also
ave

𝑖𝑗𝑘𝑙 + 𝑅𝑗𝑙𝑘𝑖 + 𝑅𝑙𝑖𝑘𝑗 = − 𝑙𝑘
𝜕 𝑖𝑗

1 −  𝑖𝑘
𝜕 𝑗𝑙

1 −  𝑗𝑘 𝜕
𝑙𝑖
1
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;𝑘 ;𝑘 ;𝑘 1 𝜕𝑧𝑘 1 𝜕𝑧𝑘 1 𝜕𝑧𝑘
+  𝑖𝑗
1

𝜕 𝑘𝑙
1

𝜕𝑧𝑘
+  𝑗𝑙

1

𝜕 𝑘𝑖
1

𝜕𝑧𝑘
+  𝑙𝑖

1

𝜕 𝑘𝑗
1

𝜕𝑧𝑘
. (163)

Therefore, if the coordinates 𝒛 =
(

𝑧1,… , 𝑧𝑛
)

are chosen to span the in-
variant measure assigned by 1, the identities (24) hold, and Eq. (163)
an be used to express the Jacobi identity,

𝑖𝑗𝑘𝑙
;𝑘 + 𝑅𝑗𝑙𝑘𝑖

;𝑘 + 𝑅𝑙𝑖𝑘𝑗
;𝑘 = − 𝑙𝑘

1

𝜕 𝑖𝑗
1

𝜕𝑧𝑘
−  𝑖𝑘

1

𝜕 𝑗𝑙
1

𝜕𝑧𝑘
−  𝑗𝑘

1

𝜕 𝑙𝑖
1

𝜕𝑧𝑘
= 0. (164)

The definition of the 4-bracket (159) can be further ameliorated so that
the first Bianchi identity (157a) holds. Indeed, suppose that 𝜎𝑖𝑗 and 𝜇𝑘𝑙

re two antisymmetric contravariant 2-tensors. Then, one can verify
hat the contravariant 4-tensor
𝑖𝑗𝑘𝑙 = 𝜎𝑖𝑗𝜇𝑘𝑙 + 𝜎𝑖𝑙𝜇𝑘𝑗 − 𝜎𝑘𝑖𝜇𝑗𝑙 − 𝜎𝑗𝑖𝜇𝑘𝑙 , (165)

atisfies the first Bianchi identity (157a). This suggests to set 𝜎𝑖𝑗 = 𝜇𝑖𝑗 =
𝑖𝑗
1 and to define the 4-bracket

𝐹 ,𝐺;𝐻,𝐿)′∗ =
𝜏2𝑐
6 ∫ 𝑓1𝑓2𝛤𝑖𝑗𝑘𝑙𝑃

[

𝐹𝑓
]

𝑖 𝑃
[

𝐺𝑓
]

𝑗 𝑃
[

𝐻𝑓
]

𝑘 𝑃
[

𝐿𝑓
]

𝑙 𝑑𝒛1𝑑𝒛2,

(166)

with 4-tensor

𝑖𝑗𝑘𝑙 =  𝑖𝑗
1  𝑘𝑙

1 +  𝑖𝑙
1  𝑘𝑗

1 −  𝑘𝑖
1  𝑗𝑙

1 −  𝑗𝑖
1  𝑘𝑙

1 . (167)

ote that the 4-tensor (167) satisfies both the symmetries (155) and
he first Bianchi identity (157a). The form (167) is also consistent with
he decomposition of algebraic curvature tensors discussed in [59].
urthermore, the bracket (166) correctly reproduces the dissipative
racket associated with the derived collision operator (150),

𝐹 ,𝛷1;𝐺,𝛷2
)′
∗ = [𝐹 ,𝐺]∗ . (168)

e remark that however the second Bianchi identity (157b) is not
atisfied by (167). Nevertheless, one can verify that

𝑖𝑗𝑘𝑙
;𝑘 +𝑗𝑙𝑘𝑖

;𝑘 +𝑙𝑖𝑘𝑗
;𝑘 = (3 − 3)

(

 𝑙𝑘
1

𝜕 𝑖𝑗
1

𝜕𝑧𝑘
+  𝑖𝑘

1

𝜕 𝑗𝑙
1

𝜕𝑧𝑘
+  𝑗𝑘

1

𝜕 𝑙𝑖
1

𝜕𝑧𝑘

)

= 0.

(169)

Note that now Eq. (169) holds for any antisymmetric tensor 1, regard-
less of whether 1 satisfies the Jacobi identity.

These results suggest that an alternative set of axioms for a general
contravariant 4-tensor 𝑅𝑖𝑗𝑘𝑙 generating metriplectic 4-bracket dynamics
is given by

𝑅𝑖𝑗𝑘𝑙 = −𝑅𝑗𝑖𝑘𝑙 , (170a)

𝑅𝑖𝑗𝑘𝑙 = −𝑅𝑖𝑗𝑙𝑘, (170b)

𝑅𝑖𝑗𝑘𝑙 = 𝑅𝑘𝑙𝑖𝑗 , (170c)

𝑅𝑖𝑗𝑘𝑙 + 𝑅𝑖𝑘𝑙𝑗 + 𝑅𝑖𝑙𝑗𝑘 = 0, (170d)

𝑅𝑖𝑗𝑘𝑙
;𝑘 + 𝑅𝑗𝑙𝑘𝑖

;𝑘 + 𝑅𝑙𝑖𝑘𝑗
;𝑘 = 0, (170e)

where the second Bianchi identity (157b) has been replaced by the
‘extended Jacobi identity’ (170e). It is worth observing that Eq. (170e)
can be equivalently written as

𝜕
𝜕𝑧𝑘

(

𝑓, 𝑔; 𝑧𝑘, ℎ
)

+ ↻ =
(

𝜕𝑓
𝜕𝑧𝑘

, 𝑔; 𝑧𝑘, ℎ
)

+
(

𝑓,
𝜕𝑔
𝜕𝑧𝑘

; 𝑧𝑘, ℎ
)

+
(

𝑓, 𝑔; 𝜕𝑧
𝑘

𝜕𝑧𝑘
, ℎ
)

+
(

𝑓, 𝑔; 𝑧𝑘, 𝜕ℎ
𝜕𝑧𝑘

)

+ ↻, (171)

where ↻ denotes summation of even permutations of 𝑓 , 𝑔, and ℎ.
This expression is similar to the distributive property of time deriva-
tives following from the fundamental identity proposed as replacement
for the Jacobi identity in Nambu mechanics [60,61]. We conclude
by observing that the 4-tensor (165) is reminiscent of the Kulkarni–
Nomizu construction for symmetric contravariant 2-tensors 𝛼𝑖𝑗 and 𝛽𝑘𝑙



Fundamental Plasma Physics 10 (2024) 100054N. Sato and P.J. Morrison
where a 4-tensor with the algebraic symmetries (155) and (157) of the
Riemannian curvature tensor is defined through the Kulkarni–Nomizu
product as follows:

𝑖𝑗𝑘𝑙 = 𝛼𝑖𝑘𝛽𝑗𝑙 − 𝛼𝑖𝑙𝛽𝑗𝑘 + 𝛽𝑖𝑘𝛼𝑗𝑙 − 𝛽𝑖𝑙𝛼𝑗𝑘. (172)

8. Concluding remarks

In this paper, we have derived a collision operator (54) for fast and
spatially localized interactions (with respect to unperturbed dynamics)
in noncanonical phase space. The interaction force driving scattering
events satisfies the elastic scattering condition (18) and the symmetry
condition (17), but it is otherwise of arbitrary nature. The derived
collision operator is consistent with conservation of particle number
and energy, it satisfies an H-theorem, and it preserves the interior
Casimir invariants induced by the microscopic Poisson tensor on the
field theory. Furthermore, it reduces to the Landau collision operator
in the limit of small deflection binary Coulomb collisions in canonical
phase space, and it provides the evolution equation for the distribution
function with a metriplectic structure. This result supports the idea that
the metriplectic bracket captures basic properties associated with the
algebraic structure of dissipative systems.

The shape of thermodynamic equilibria (74) resulting from max-
imization of entropy departs from Maxwell–Boltzmann statistics: the
distribution function depends on the Casimir invariants associated with
the noncanonical phase space structure, and the Jacobian connect-
ing the preserved phase space measure with the configuration space
measure.

As discussed in Section 5, the present theory can be applied to
explain self-organizing phenomena driven by the noncanonical Hamil-
tonian structure of the phase space, as well as to describe collisionless
relaxation in magnetized plasmas and stellar systems by modeling
interactions in terms of collisions between clusters of charged particles
or gravitating bodies. In particular, conservation of Casimir and/or
macroscopic invariants during the equilibration of the statistical en-
semble explains, in consistency with the laws of thermodynamics, the
self-organization of stable structures in reduced mechanical systems
affected by rigidity constraints, as well as the creation of thermal equi-
libria in collisionless systems over time scales shorter than the binary
Coulomb or gravitational collision times between charged particles or
massive bodies.
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