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Noncanonical Hamiltonian Density Formulation of Hydrodynamics 

and Ideal MHD 

Philip J. Morrison and John M. Greene 

Princeton University, Plasma Physics Laboratory 

Princeton, N.J. 08544 

ABSTRACT 

We present a new Hamiltonian density formu~ation of 

a perfect fluid with or without a magnetic.field. Contrary 

to previous work the dynamical variables are the physical 

variables, p, v, B, and s, which form a noncanonical set. 

A Poisson bracket which satisfies the Jacobi identitY'is 

defined. This formulation is transformed to a Hamiltonian 

system where the dynamical variables are the spatial Fourier 

coefficients of the fluid variables. 

,i 
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Several advantages may be gained from expressing a set of 

equations in Hamiltonian form. In addition to their formal 

elegance, Hamiltonian systems possess Poincare invariants that 

influence the dispersion of an ensemble of systems with clustered 

ini tial conditions. 'A manifestly Hamiltonian formulation of a 

f; given problem makes it easier to find those approximations that 

I) 

'L) 

preserve the Hamiltonian character. Here we present such a formu-

lation of hydrodynamics and magnetohydrodynamics. 

Hamiltonian systems are most elegant when expressed in 

canonical coordinates. Hydrodynamics is most usefully expressed 

in Eulerian variables. These two, desiderata conflict. In practice, 

the penalty paid for adopting noncanonical coordinates is not severe, 

so that branch of the dichotomy is pursued here. 

Previously, the equations of hydrodynamics
l andMHD~ in 

both Eulerian and Lagrangian form, have been shown to arise from a 

suitable Hamilton's principle. such a Lagrangian density formulation 

is the natural starting place for derivation of a Hamiltonian density 

d . t' ,3 escrJ.p J.on. Typically, the Euler-Lagrange equation is the fluid 

equation of motion; the remaining fluid equations have the role of 

constraints. A Hamiltonian density formulation obtained by Legendre 

transformation necessarily embodies this division of roles. Alter-

natively, Hamiltonian type equations have been given directly for a 

fluid 4 and for ideal MHD. 5 In these formulations, Clebsch or other 

non physical variables are necessary and entropy convection is not 

included. Our formulation departs from previous work in that all 
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of the fluid equations are, in principle, placed on equal footing; 

further, the dynamical variables are the physical variables. The 
I 

fluid equations, including entropy convection and (but not neces-

sarily) the Maxwell induction equation, are obtained in Poisson 

bracket form;' the Hamiltonian density is the energy density of the 

o fluid. The physical variables are noncanonical; this results in 

alteration of the usual Poisson bracket. The use of noncanonical 

6 variables has proven to be fruitful for Hamiltonian systems and 

a Poisson bracket similar to ours has been used to express the 

. 7 8 
Korteweg-deVries equation as a Hamiltonian system. I 

We wish to cast the following set of equations into Hamil-

toni an form: 

= -I] (v2/2) + v x .(1] x v) - p-l l](p 2U ) + p~l(1] x B) 
- p 

~t = I] x (v x B) 

s = -v·l]s 
t 

x B ( 1) 

( 2) 

(3 ) 

(4 ) 

Equation (1) is the hydrodynamic force balance equation for a fluid with 

density p and velocity v, with the addition of the magnetic body 

force term J x B. We have eliminated J by making use of Ampere's 

law: J = I] x B. The internal energy per unit mass, U (p ,s.) is a pre­

scribed function of p and the entropy per unit mass 9 s. The inten-

sive variables, pressure p and temperature T, are obtained from 

2 this function: p = p U and T = U. Equation (2) ~s a mass conservation .. 
p s 

Equation (3) is the Maxwell induction equation with -the electric field 
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eliminated by Ohm's law: § + v x B = O. Here infinite conductivity 

is assumed. 0 Equation (4) expresses entropy convection; heat flow is 

assumed to vanish. The equation ~·B = 0 enters our formulation 

only as an initial condition. 

The energy density of a fluid described by Eqs. (1) - (4) ,is 

2/2 () 2 2 h 2/ o. h k' . H = ~v + ~U p,s + B / , were pv 2 1S te 1net1c energy 

density and the remaining two·terms are the internal and magnetic 

energy densities. We take this as our Hamiltonian density and 

construct the Hamiltonian H{p ,s,::,~}= L H(p :s'::'~) de where the 

curley brackets are used to indicate that H is a functional of the 

enclosed functions. The integration is over a fixed spatial region 

v. We desire a Poisson bracket, such that Eqs. (1)-(4) can be 

represented in the form 

i = 0,1,2 ••• 7 (5) 

where the xi are suitable functional dynamical variables. 

Before writing this bracket (Eq. 6 below), we briefly discuss 

the structure of our formulation. Quite generally consider the 

vector space V,o over the real numbers R, whose elements are func-

tionals of the form 

where X is an no-..;°tuple of co:> (V) functions xi (~, t) . (In particular, 

o 12,3,4 d 5,6,7 ) h t' / X E P, X - S,X E v, an X E B. T e no at10n a~ aXa 

is used to indicate that F depends\on the derivatives of xi with 

respect to each of the three spatial variables x , a 
a 

= 1,2,3. 
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We assume F has a finite number of arguments and is a C~ function 

in each of them. Further, we assume that F and all its derivatives 

vanish on avo The bracket we obtain is a bilinear function which 

n maps V ~ ·V to V. In addition, the bracket possesses the following 

two important properties: 

A 

(i) [F,FJ= 0 for every F€V. For V over R, this is equivalent 

to [F,G]= -[G,F] for F,GEV , 

(ii) the Jacobi identitylO [E,[F,G]] + [F,[G,E]] + [G,[E,F]] = 0 

for every E,F,GeV. 

A vector space together with a bracket which has the above properties 

11 defines a Lie algebra. 

Now we introduce the following bracket 12 

-tW~ 
A 

oG ] ~OF . [i~:~) :~lJ [F,G] 1/. oG 
+ 

of • 1/ + x = ov "" ov op ov 

[ 1 [OF oG oG :~ ]] ~-1 of [~ x[~ x :;J] + p ~s· oS oV - oS + ov 

+ of . r ~ x [~ x p-1 :~J] ]1 dT = i of oij 8G (6) 
ol 

~o dT. oB 0; \ V 

" i Here the notation of/oX means the functional derivative with respect 
...., 

to xi. Suppose each xi contains an additional parameter dependence 

xi(~,ai,t}. We define the functional derivative by8 

of 
"8""a. 

l 

(not summed) . (7) 
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This functional derivative has. the role, in finite dimen-

sional Hamiltonian systems, of the derivatives with respect to 

phase coord ina tes dF jag. , aF lap. . In finite degree of freedom 
~ ~ 

systems the Poisson bracket is written 

[F, G] aF Jij aG = 
az i az j 

where the zi are the phase space coordinates, zi E:{gl ' ... gN , 

Pl, ... PN}. In canonical coordinates the symplectic structure J
ij

, 

is 

where I is the unit Nx N matrix. In a noncanonical system this 

matrix may be full and depend on the dynamical variables. Clearly, 

this is the case for our bracket, Eg. (6). The symplectic structure 

here is the operator oij which, in addition to depending on the 

dynamical variables, contains derivatives. 

Now we complete the description of our formulation and dem-

onstrate the relationship between this bracket and Egs. (1)-(4). 

We define a set V c V whose elements are of the form 

-1 iii X {x } = f. (x) X (x,t) d't 
V ~ - -

i = 0,1,2 .... 7 (not summed) 

where i 
E COO (V) and the f. arbitrary ft' 13 of alone, X are unc ~ons x 

~ 

which vanish on av. V is thus the set of dynamical variables. 

Substituting -0 
and H into Eg. (5) yields X 

a XO 
" -0 A ( (a J --at - [X ,H] = Jv" fo (~) a~ + ~. (P'!) - dT = 0 C8L 
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Since f (x) is an arbitrary function, by the Du Bois-Reymond14 
o ~ 

lemma, Eq. (8) implies Eq. (2). Eqs. (1,3,4) follow, from the 

remaining dynamical variables of the set V, in a similar manner. 

Several features of the bracket defined in Eq. (6), deserve 1 

comment. First, the density, p , appears in the denominator of 

several terms. This makes it awkward to evaluate the bracket 

exactly when polynomial or Fourier representations are used for 

the dynamical variables. This is easily rectified through a 

nonlinear transformation described below, and the resulting bracket, 

in terms of the new variables, has a pleasing form. Second, gra-

dients appear throughout the bracket. This is reminiscent of the 

bracket used in Hamiltonian theories ·of the Korteweg-deVries 

t ' 7,8 equa ~on 

[F G] = f dx ~ '(_0_ OGJ' , aU ax au 

Two methods have been used to reduce the Kdv bracket to canonical 

form. Gardner 8 used a Fourier transform to convert the derivatives 

to numbers, and then scaled the coefficients to' achieve canonical 

form. Similarly motivated, we also consider Fourier transforms 

below. In another approach to the Korteweg-deVries equation, 
, 7 

Zakharov and Faddeev used a spectral transform to achieve canonical 

form. This method may be applicable here. 

Another feasible attack on the derivatives in our Poisson 

bracket is to express velocities as appropriate derivatives of a 

new set of variables. Then, when the 'bracket is transformed into 

these new variables, the derivatives will effectively cancel out. 



" 

-8-

4 
Indeed, the canonical variables used by Davydov to express hydro-

, 5 
dynamics and Zakharov and Kuznetzov to express MHD (ignoring 

entropy) are of this type. This approach will not be further pur­

sued here. 

Our new set of Eulerian variables, which yields an improved 

Poisson bracket is {p,a,~,~} where a = ps and M = PVi a is the 

specific entropy and M is the momentum density. Substitution of 

these variables into Eqs. (1) - (4) results in eight conserva_tion 

equations. 2 - -1 -The pressure is now determined by p = p CU + ap U) 
p a 

where Uc.p,a}. = U(p,s}.. As a result of the the transformation 

together with similar transformations for the remaining variables, 

Eq. (6) becomes 

[F ,G] 

+ [ 8F 
a 8M o il 

(
OF . il 0<3 
oM op 

oG 8G oil of} 
8a oM ...; 8a 

oG . il OF] + M. (oF 
oM _ op oM 

+ B' [r of o il 8G 
_ 8M 8'B-

+ (~ of oG 
'iJ 8'B

0 

oM -
... 

• il oG oG 0 il 8F] 
8M - oM '_ 8M 

oG oil 8F] 
oB _'8M 

8G ~tlJ } oB 0 

... 
(9) 

Notice that each term contains one Eu~erian variable in the 

numeratori the terms in the denominator have been eliminated. 

Now consider a transformation of the Hamiltonian coordinates 

from Eulerian variables to the coefficients of the Fourier transform 

of these variables. For convenience, we take V to be a unit cube 

and adopt periodic boundary conditions. Then 

I 
- I 
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p = ~ p ~ (t l. exp C.2 7f k. xL 

where k E Z x Z x Z (Z _ integers). We observe from Eq. (7) 

,.D that 

= J of 
8P exp(27fik·x) d't . 

V 

Inverting Eq. (11), we obtain 

of 
op ;::: L: exp( ... 27fik·x} 

k 

Inserting Eqs. (10) and (12), and the analogous expressions for 

the other variables in our set, into Eq. (9) yields 

[F ,G] aF =L: 
k " a~k ,-t. 

. 0 
:::k,l 

where:k is the 9 ... tuple (Pk,crk,l!k,~k)' and the matrix 

~kl is 

00 i'-~l+k~----I 0 0 0 
,--_....=:._ .. ...:::._-_ .. _-- -j 

o 0 ( ... crl+k~ I 0 0 0 

= 27fi 

------.-,.-.. ----.i--.---...:::....-------.-1.-.-.... - .. --.--.--.--.-" .. - .. 
.. ' i : 

I I ! , 
Pl+k~ jcr~+~~ : ~ l!{+~ - l!~+~~ : ~ ~~+~ ... ~.~~+~? 

I l I . 
~~---' ------~·----·-·---·-·-t··--------·--··-···-·--·--· 

o 0 i '0 0 0 

o 0 \-k _B"+k+ koBo il 0 0 0 ! -,(.; _-t.+k:::: ! 
o 0 L ._ .. ___ . ___ . __ .. __ .J 0 0 0 

lID. ). 

(11) 

(12) 

(13) 

. i 
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, 
where I is the 3. x 3 unit matr'ix appropriate to the box in 

which it is contained. The matrix has the important property 

2kl = -2lk ' where the tilde indicates transpose. Equation (13) 

can be written as follows: 

[F, G] = i,j € {0,±1,±2, ..• } 

, i 
where z € {P k ,CJk '~k ':§kl~ € ZxZxZ}. The matrix J has the 

- -
ij . ji 

property J = -J and its elements can be obtained by a suit-

able maplS of the .indices of ~kl onto Z. Clearly Eq. (14) is 

of the same form as finite Hamiltonian systems, but here J is 

of infinite order. Approximation techniques, along with the 

(14) 

proof of the Jacobi identity, integral invariants and commutation 

relations, will be the subject of a future publication. 
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