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Codifying Dissipation – Some History

Is there a framework for dissipation akin to the Hamiltonian

formulation for nondissipative systems?

Rayleigh (1873): d
dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+
(
∂F
∂q̇ν

)
= 0

Linear dissipation e.g. of sound waves. Theory of Sound.

Cahn-Hilliard (1958): ∂n
∂t = ∇2δF

δn = ∇2
(
n3 − n−∇2n

)
Phase separation, nonlinear diffusive dissipation, binary fluid ..

Other Gradient Flows: ∂ψ
∂t = G δFδψ

Otto, Ricci Flows, Poincarè conjecture on S3, Perlman (2002)...



Poisson Brackets and Bracket Dissipation

Noncanonical Poisson Brackerts (pjm 1980)

Degenerate Antisymmetric Bracket (Kaufman and pjm 1982)

Double Brackets (Vallis, Carnevale; Brockett, Bloch ... 1990)

Metriplectic Dynamics (pjm 1984,1986)

Generic (Grmela, Oettinger 1997)



Poisson Brackets and Bracket Dissipation

Noncanonical Poisson Brackerts (pjm 1980s)

Degenerate Antisymmetric Bracket (Kaufman and pjm 1982)

∗ Double Bracket (Vallis, Carnevale; Brockett, Bloch ... 1990)

∗ Metriplectic Dynamics (pjm 1984,1986)



Noncanonical MHD (pjm & Greene 1980)

Equations of Motion:

Force ρ
∂v

∂t
= −ρv · ∇v −∇p+

1

c
J ×B

Density
∂ρ

∂t
= −∇ · (ρv)

Entropy
∂s

∂t
= −v · ∇s

Ohm′s Law E + v ×B = ηJ = η∇×B ≈ 0

Magnetic Field
∂B

∂t
= −∇×E = ∇× (v ×B)

Energy:

H =
∫
D
d3x

(
1

2
ρ|v|2 + ρU(ρ, s) +

1

2
|B|2

)

Thermodynamics:

p = ρ2∂U

∂ρ
T =

∂U

∂s
or p = κργ



Noncanonical Bracket:

{F,G} = −
∫
D
d3x

[δF
δρ
∇δG
δv
− δG
δρ
∇δF
δv

]
+

[
δF

δv
·
(
∇× v

ρ
× δF
δv

)]

+
∇s
ρ
·
[
δF

δv
· ∇δG

δs
− δG
δv
· ∇δF

δs

]
+ B ·

[
1

ρ

δF

δv
· ∇δG

δB
− 1

ρ

δG

δv
· ∇δF

δB

]

+ B ·
[
∇
(

1

ρ

δF

δv

)
· δG
δB
−∇

(
1

ρ

δG

δv

)
· δF
δB

] .
Dynamics:

∂ρ

∂t
= {ρ,H} , ∂s

∂t
= {s,H} , ∂v

∂t
= {v, H} , and

∂B

∂t
= {B, H} .

Densities:

M := ρv σ := ρs Lie− Poisson form



Casimir Invariants

Casimir Invariants:

{F,C}MHD = 0 ∀ functionals F.

Casimirs Invariant entropies:

CS =
∫
d3x ρf(s) , f arbitrary

Casimirs Invariant helicities:

CB =
∫
d3xB ·A , CV =

∫
d3xB · v

Helicities have topological content, linking etc.



Hamilton’s Equations

Phase Space with Canonical Coordinates: (q, p)

Hamiltonian function: H(q, p) ← the energy

Equations of Motion:

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
, i = 1,2, . . . N

Phase Space Coordinate Rewrite: z = (q, p) , α, β = 1,2, . . . 2N

żα = Jαβc
∂H

∂zβ
= {zα, H}c , (Jαβc ) =

(
0N IN
−IN 0N

)
,

Jc := Poisson tensor, Hamiltonian bi-vector, cosymplectic form



Noncanonical Hamiltonian Structure

Sophus Lie (1890) −→ PJM (1980) −→ Poisson Manifolds etc.

Noncanonical Coordinates:

żα = {zα, H} = Jαβ(z)
∂H

∂zβ

Noncanonical Poisson Bracket:

{A,B} =
∂A

∂zα
Jαβ(z)

∂B

∂zβ

Poisson Bracket Properties:
antisymmetry −→ {A,B} = −{B,A}
Jacobi identity −→ {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0
Leibniz −→ {AC,B} = A{C,B}+ {C,B}A

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs
(Lie’s distinguished functions!)



Flow on Poisson Manifold

Definition. A Poisson manifold Z is differentiable manifold with
bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)

st C∞(Z) with { , } is a Lie algebra realization, i.e., is

i) bilinear,
ii) antisymmetric,
iii) Jacobi, and
iv) Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH.

Because of degeneracy, ∃ functions C st {A,C} = 0 for all
A ∈ C∞(Z). Called Casimir invariants (Lie’s distinguished func-
tions!).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J ⇒ Casimirs:

{A,C} = 0 ∀ A : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson

bracket that are associated with any Lie algebra, say g.

Natural phase space g∗. For f, g ∈ C∞(g∗) and z ∈ g∗.

Lie-Poisson bracket has the form

{f, g} = 〈z, [∇f,∇g]〉
=

∂f

∂zi
c
ij
k zk

∂g

∂zj
, i, j, k = 1,2, . . . ,dim g

Pairing < , >: g∗×g→ R, zi coordinates for g∗, and c
ij
k structure

constants of g.



Poisson Integration

Symplectic integrators (1980s): time step with canonical trans-

formation.

Poisson integrators (timely): time step with canonical transfor-

mation.

Symplectic on leaf but remain on leaf exactly!

* GEMPIC for the Vlasov equation: Kraus et al., J. Plasma

Physics 83, 905830401 (51pp) (2017).

* B. Jayawardana, P. J. Morrison, and T. Ohsawa, Clebsch Can-

onization of Lie–Poisson Systems, J. Geometric Mechanics 14,

635–658 (2022).



Canonization of Lie-Poisson Brackets

Vlasov Lie-Poisson Bracket:

{F,G} =
∫
d3xd3v f(x, v)

[
δF

δf
,
δG

δf

]

* Clebsch potentials, making a bigger system, f = [χ, ψ], works

also for QM with Wigner-Weyl by replacing [ , ] by Moyal bracket

(Bialynicki-Birula & pjm 1991). Nonlinearity via Hamiltonian.

* Mean field (self-consistent) Hamiltonian-Jacobi theory of Vlasov

in terms of mixed variable generating function S(q, P, t) with Van

Vleck determinant (Pfirsch, pjm 1985,2012). Related to QM?

* Lie generators on a symplectic leaf. Ye et al. (1991).



Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a varia-

tional principle with constraints for equilibria states.



Double Bracket Simulated Annealing

Good Idea:

Vallis, Carnevale, and Young, Shepherd (1989)

dF
dt

= {F , H}+ ((F , H)) = ((F ,F)) ≥ 0

where

((F,G)) =
∫
d3x

δF

δχ
J 2δG

δχ

Lyapunov function, F, yields asymptotic stability to rearranged

equilibrium.

• Maximizing energy at fixed Casimir: Works fine sometimes,

but limited to circular vortex states ....



Simulated Annealing with Generalized
(Noncanonical) Dirac Brackets

Dirac Bracket:

{F,G}D = {F,G}+
{F,C1}{C2, G}
{C1, C2}

− {F,C2}{C1, G}
{C1, C2}

Preserves any two incipient constraints C1 and C2.

New Idea:

Do simulated Annealing with Generalized Dirac Bracket

((F,G))D =
∫
dxdx′ {F, ζ(x)}D G(x,x′) {ζ(x′), G}D

Preserves any Casimirs of {F,G} and Dirac constraints C1,2

For successful implementation with contour dynamics see PJM
(with Flierl) Phys. Plasmas 12 058102 (2005).



Double Bracket SA for Reduced MHD

M. Furukawa, T. Watanabe, pjm, and K. Ichiguchi, Calculation
of Large-Aspect-Ratio Tokamak and Toroidally-Averaged Stel-
larator Equilibria of High-Beta Reduced Magnetohydrodynamics
via Simulated Annealing, Phys. Plasmas 25, 082506 (2018).

High-beta reduced MHD (Strauss, 1977) given by

∂U

∂t
= [U,ϕ] + [ψ, J]− ε∂J

∂ζ
+ [P, h]

∂ψ

∂t
= [ψ,ϕ]− ε∂ϕ

∂ζ
∂P

∂t
= [P, ϕ]

Extremization

F = H +
∑
i

Ci + λiPi ,→ equilibria, maybe with flow

Cs Casimirs and P s dynamical invariants.



Sample Double Bracket SA equilibria
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Nested Tori are level sets of ψ; q gives pitch of helical B-lines.



Double Bracket SA for Stability

M. Furukawa and P. J. Morrison, Stability analysis via simulated

annealing and accelerated relaxation , Phys. Plasmas, 2022.

Since SA searches for an energy extremum, it can also be used for

stability analysis when initiated from a state where a perturbation

is added to an equilibrium. Three steps:

1) choose any equilibrium of unknown stability

2) perturb the equilibrium with dynamically accessible (leaf) per-

turbation

3) perform double bracket SA

If it finds the equilibrium, then is is an energy extremum and

must be stable



Sample Double Bracket SA unstable equilibria

(a) Radial profile of =U�2,1. (b) Radial profile of ='�2,1.

(c) Radial profile of < �2,1. (d) Radial profile of < J�2,1.

FIG. 11: Radial profiles of the (m, n) = (�2, 1) components are plotted at several times

during the SA evolution. The perturbation amplitudes decreased in time.

FIG. 12: Poloidal rotation velocity v✓ profile.
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(a) Radial profile of <U�2,1. (b) Radial profile of =U�2,1.

(c) Radial profile of <'�2,1. (d) Radial profile of ='�2,1.

(e) Radial profile of < �2,1. (f) Radial profile of = �2,1.

(g) Radial profile of < J�2,1. (h) Radial profile of = J�2,1.

FIG. 16: Radial profiles of the (m, n) = (�2, 1) components are plotted at several times

during the SA evolution. The perturbation amplitudes grew in time.
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Metriplectic Dynamics

A dynamical model of thermodynamics that ‘captures’:.

• First Law: conservation of energy

• Second Law: entropy production



Entropy, Degeneracies, and 1st and 2nd Laws

• Casimirs of [, ] are ‘candidate’ entropies. Election of partic-
ular S ∈ {Casimirs} ⇒ thermal equilibrium (relaxed) state.

• Generator: F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = [H,F] + (H,F) = 0 + (H,H) + (H,S) = 0

Foliate Z by level sets of H, with (H, f) = 0 ∀ f ∈ C∞(M).

• 2nd Law: entropy production

Ṡ = [S,F] + (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilbrium state: ∇F = 0.



Metriplectic Simulated Annealing

Extremizes an entropy (Casimir) at fixed energy (Hamiltonian)

C. Bressen Ph.D. Thesis TUM, Garching 2022

Two cases: 2D Euler and Grad Shafranov MHD equilibria.



CHAPTER 6. NUMERICAL EXPERIMENTS: DIV-GRAD BRACKETS IN TWO
DIMENSIONS 71

(a) Color plot. (b) Scatter plot.

Figure 6.7: Relaxed state for the test case euler-ilgr. The same as in Figure 6.2, but for the
collision-like operator.

The relaxed state is presented in Figure 6.9: from both the color plot (a) and scatter
plot (b) we see that the initial condition has relaxed to a solution in accordance with the
variational principle.

For this test case, the results strongly suggest that the relaxation to the state of con-
strained minimum entropy, which corresponds to the solution of the variational principle,
appears to be a feature of the collision-like operator, rather than being caused by numerical
dissipation, as we observed for the diffusion-like operator.



CHAPTER 6. NUMERICAL EXPERIMENTS: DIV-GRAD BRACKETS IN TWO
DIMENSIONS 105

(a) Color plot. (b) Scatter plot.

Figure 6.29: Relaxed state for the gs-imgc test case. The same as in Figure 6.23, but for the
collision-like operator and the case of the Czarny domain discussed in Section A.4.2. With respect to Figure
6.27(b) for the diffusion-like operator, we see from (b) that the agreement between the relaxed state and the
prediction of the variational principle is better.


