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Finite Hamiltonian Systems — Hamiltonian Field Theories

3 large amount of finite degree-of-freedom (DOF) Hamiltonian systems lore:

1 DOF Integrable

2 DOF Nonintegrable, broken tori, chaos

3 DOF Tori are not barriers, “‘diffusion” around tori

N DOF Linear & nonlinear bifurcation theory, e.g. Hamiltonian — Hopf & Krein — Moser
oo DOF All of above plus?

What doesn’t carry over?

— Continuous Spectrum




Hamiltonian Field Theories — Finite Hamiltonian Systems
e Vlasov Equation (1980) — Poisson Geometry

Definition. A Poisson manifold Z is differentiable manifold with bracket
{,}:CF(Z) x C®(Z) > C¥(=2)

st C*°(Z) with {, } is a Lie algebra realization, i.e., is

i) bilinear, ii) antisymmetric, iii) Jacobi, and iv) Leibniz, i.e., acts as a derivation.
Flows are integral curves of noncanonical Hamiltonian vector fields, JdH.

Because of degeneracy, 3 functions C st {F,C} = 0 for all FF € C*°(Z). Called Casimir
invariants (Lie's distinguished functions!).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J = Casimirs:

{F,C} =0 VF:Z-—>R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C: COns'l‘.'




Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson bracket that are associated
with any Lie algebra, say g.

Natural phase space g*. For f,g € C°°(g*) and z € g*.

Lie-Poisson bracket has the form

1f,9} = (2, [Vf,Vg])
_ Of ij , 99

- C 2L ——
Ozt kK kazj’

Pairing <, >:g* x g — R, z' coordinates for g*, and cij,~C structure constants of g.

i i k=1,2,....dimg

Vl]asov Lie-Poisson Bracket:

_ [ |OF O\ e, o |OF OF
{F’G}_<f’[5f’5f]>_/2d Zf!5f’5f]



General Class of Mean-Field Hamiltonian Theories

Density:
C(q,p,t) s.t. (: ZxR—R
Phase Space:
z:=(q,p) € Z=TMNxR

Equation of Motion:

¢
— ,El =20
5 TIG.e]
Particle Poisson Bracket:
0fdg 0gOf
[f7 g] — T
OqOp 0qOp

Particle Energy:

ElC]l= 7 = nonlinear



Lie-Poisson Hamiltonian Structure

Hamiltonian (energy):

H = Hy+ Hy+ o = [ i) )+, [ a2 [ 2 c(hae, ) () + ..

Lie-Poisson Bracket:

OF o
{F,G} = / d°z ¢ [ G] < arbitrary inner algebra

8¢ 8¢

Equation of Motion:

Casimir Invariants:

Cfel = [ d= (o)



Lie-Poisson Mean-Field Examples

Vlasov Poisson: z= (xz,p = mv), ¢ — f(x,p,t) = phase space density

p2

1
dadp L f(x, —/dE2
AxRxpsz(xp)Jrszx
2

L ! 4./ / /AW
— dzd , / dd/ dz'dp’ (. p)|a — |
/an vdp 5 —f(@,p) +c | dedp | dadp f(z,p)le — 2| f(a,p)

0H p

2
E = ﬁ—%‘Feﬁb[ﬂ(fﬂ)

H{f]

2D Euler: z= (x,y), ¢ — w(x,p,t) = scalar vorticity

2 \V4 2
Hlw] = Hdedy%z I_IQd,xdy' i

— c/I_IQd:I:dy /I_Izd:c/dy/w(a:,y) In[(x — a:/)z + (y — y/)z] w(z’,y)
e = 2 =yl y)

Sw

Other: Jeans equation, quasigeostrophy, Hasegawa-Mima, ...

(1)



Other Lie-Poisson Mean-Field Examples

e Quantum Mechanics:

Use Wigner-Weyl representation with f replaced by Wigner function and inner algebra by
the Moyal bracket (Birula & pjm 1981)

2 h
Fav ) — W), [figl — [fgly = 5 f@p)sin2(9r- Fp— 9p- 91) g(r,p)
2
H[W] = /dl_ W(r,p) (5— + V(r)) : where dIr = d"rd"p/(27h)"™
m

e Schrodinger-Poisson:

p2

H[W] = /dr W(r,p) o+ %/dr’/dr W, )W (r,p)V(r,r').

m



Other Lie-Poisson Mean-Field Examples Cont.

e Lie-Poisson — Hamilton-Jacobi Formulation:

85 1 |85]°
at+2m 9q + e¢[S](q,t) = Hy

where and Hg is an arbitrary reference Hamiltonian, ¢ is given by Poisson’s equation with
f(z,t) defined by

2
d(q,P,t)=f q,a—s,t 05 +— Van Vleck determinant
oq 0qoP

Mean field (self-consistent) Hamiltonian-Jacobi theory of Vlasov in terms of mixed variable
generating function S(q, P,t) with Van Vleck determinant (Pfirsch, pjm 1985,2012).
Hamilton-Jacobi <~ Wigner formulation for QM? H-J hierarchy?

e Leaf Formulation:

Replace S by Lie generator on a symplectic leaf. (e et al. 1991.)



Linear Normal Form with Continuous Spectrum

Stable Normal Form:
N ooilwil o, o 3 al
H=Y 20 (02 +a2) =i> wiQiPi= Y oilwilJ; » [duo(u)lw(w) J(w

Stable when 4 a canonical transformation to Action-Angle variables. Note important sig-
nature: o; € {—1,1}. Negative energy modes and Krein-Moser.

Two Complications: Noncanonical & oco-dimensional — Continuous Spectrum

Noncanonical: 2= J(z)0H/0z = J(2)0(H+ C)/0z, 6(H+C) =0=2z¢. 2=2¢+ 2

2 = J(ze)0H /0% where H; =z D?F(ze) - 2/2
— easy matrix calculation to reduce to Casimir leaf

Infinite Dimensions: Integral transform/Coordinate Change —

g = GIf]
— general class of transforms for Lie — Poisson brackets with CS




Example: Linear Vlasov-Poisson

Equilibrium & Linearization: 6(H +C) =0 = fe(v)

f — fe(v> _I_ f(a:,v,t)
Linearized EOM:

_ — 0
or m ox Ov

of . of e 0dlz,t; flofe
Ay

box = —4Te /Rdv flz,v,t)
Linearized Energy (Kruskal and Oberman):

m

i
dvdx v/

Hf = ——
L 2 JNxR f!

1 2D
dx
+ = /H 32
VlIasov Lie-Poisson Bracket:

{F,G} = /and’Ude‘ fe(v) !5F 5G]

of " of



Example: Linear Vlasov-Poisson Canonization

Fourier Series: = Ypez fx(v, )™ and ¢ = Spez dp(t)e™

Linearized EOM:

Ofk e Ofe
9k L kvt — ik 227 = 0
o ikv f, — ikoy, ——
k2¢k — 4re /R fu(v, ) dv (LVP)

Canonical Poisson Bracket:

1k OF 0G 0G OF s OF 0G  0G oF
{FG}L_Z / < )zZ/dv( - )
Sfkdf—r  Ofpdf_ i—=1/R  \0qropr  0qxdpy

where g (v,t) = 77 fi(v, 1) and py(v,t) = f_(v,1)

Linear KO Hamiltonian:

- Z/dv—lko Zkzlaﬁ 2= [dv[ dv (o) My (ol o)

k,k'



Good Equilibria and Initial Conditions

Definition (VP1). A function fe(v) is a good equilibrium if f/(v) satisfies

() fLe LIAR)NCO%R), gstl<g<oo,and ast0<a<1,
(ii) vk > 0 st |fi(v)| < Alv|™# V|v| > vx, where A >0 and x>0 , and
(iii) f./v <0 Vv eR or fois Penrose stable. Assume f.(0) = 0.

Definition (VP2). A function, }k(v), is a good initial condition if it satisfies

(D) fio(0),vfp(v) € LP(R),
(i) f fu(v)dv < co.

Good equilibria imply only continuous spectrum, while good initial conditions are physically
reasonable and make theorems work. Not optimal.




Hilbert Transform Review

Hilbert transform:

g(t)

t—x

H[g](z) := %]{Rdt

J theorems about Hilbert transforms in LP(R) and C%%(R). Plemelj, M. Riesz, Zygmund,
and Titchmarsh --- Can be extracted from Calderon-Zygmund theory.

Theorem (H1).

(ii) H: LP(R) — LP(R), for 1 < p < oo, is a bounded linear operator:

1H[g]llp < Apllgllp;
Ap depends only on p,

(ii)) H has an inverse on LP(R), given by

H[H[g]] = —g,

(iii) H: LP(R) N C9%(R) — LP(R) N CY%(R).



Hilbert Transform Review Continued
Theorem (H2). If g; € LP(R) and g» € L9(R) with %—I— % < 1, then
H|g1Hlg2] + 92Hl91]| = Hlg1]HI[g2] — 9192
The proof, based on the Hardy-Poincaré-Bertrand theorem, is due to Tricomi.

Lemma (H3). If vg € LP(R), then

Hlog(w) = u Hlgl(w) + = [ gdv.

pri. U =utvu— u_ 43

v—UuU vV—Uu




G-Transform

Definition (G1). The G-transform is defined by

flv) = Glgl(v)
= er(v) g(v) +¢1(v) Hlgl(v),

where
>
w5 0 fe(v
er(v) = =75 Jel) : er(v) =1+ Hler](v) .
k< Ov
Remarks.
e We suppress the dependence of ez on k throughout. Note, ws := 4mnge?/m is the

plasma frequency corresponding to an equilibrium of number density ng.

e ¢ = cp+ie; (complex extended) is the plasma dispersion relation s.t. vanishing = discrete
normal eigenmodes. When ¢ #= 0 4 only continuous spectrum; i.e. no dispersion relation.

o ¢; x fl € LIR) N CO%R) = ep — 1 € LIR) N CH*(R), and since iMpy s €1 = 0,
|im|v|_>OO€R: 1, both ep,e5 € Loo(R).



G-Transform Properties

Theorem (G2). G: LP(R) — LP(R), 1 < p < oo, is a bounded linear operator:

IGLglllp < Bpllgllp

where By depends only on p.

Theorem (G3). If fe is a good equilibrium, then G[g] has an inverse,
G: LP(R) — LP(R),
for 1/p+1/q <1, given by

o) = G
= rl) oy - 1 gy,

le(w)|? [e(u)|?

where |e|? 1= €2, + €2.



(G3) Proof

That G is the inverse follows directly upon inserting G[g] of (G1) into ¢ = G[G][g]], and
using (H2) and ep(v) = 1 4+ Hleg].

o) = U@ = Y py - D g

() P
= O len(w) 9(0) + erCu) Hla) )] = 7 59 H [en) a(u') + ex(u') Hlal ()] ()
_ Eé(u) u GR(U)GI(U) B er(u) w) — er(u) ¢ c u
= S o)+ EOL gl (0) — S Al () — S el g+ 1 Hlal) ()
_ 6%(“) u er(u)er(u) w) — er(u) w) — er(u) erl(u w) — alw) er(u
= I ) + P ) S el ) — S (IR0~ gu) e (w)
= o+ S~ ()~ (Al
= )+ EPE gl ) - S, ]
= g+ L9 gy — LY fgwenu) = g(u)

|e(u)[? e(u)]?



G - Transform Properties Continued
Lemma (G4). If ¢; and ep are as above, then
(i) for vf € LP(R),
Glofl(u) = uGlf](u) - e Je T

(i) Gler)(u) = 2

]2 (u)
(iii) and if f(u,t) and g(v,t) are strongly differentiable in ¢; i.e. the mapping t — f(t) =
f(t,-) € LP(R) is differentiable, (the usual difference quotient converges in the LP sense),
then

~[0f] _ OG[f] _ o
a) G_a_{__ o = ot
9g1 __ 9G[g] _ o
b) G |4 =GL =%

prf. (i) goes through like (H3), (ii) follows from e = 1 + H[e;], and (iii) follows because
G is bounded and linear.



G-Morphism?

Glf] = er(v) f(v) 4 €1(v) H[f](v)

G110y = LY pwy - L mp)

€R+€% R"‘
Compare with z € C: complex numbers i2 = —1, while Ho H = —1.
z=x+ 1y
-1 _ XL ) Yy

— 1
2 +y2  x?+y?

Algebraic structure?



Diagonalize via Mixed Variable Generating Function

Generating Functional:

Fla. Pl = 3 [ au(0) GIPI(w) do
k=1

- er(v)
— en(v) q.(v) Pr(v) dv + ! (v) Pp.(u) dvdu)
kgl </ r(v) g (v) Py ][ / - ax(v) By
Canonical Coordinate change (q,p) +— (Q, P):
pr(0) = T TS =GR Qi) =50 S = Glagd ()

Hamiltonian in new coords:
©.@)
Hy =3 [ iwn(u) Qulw) Py(u) du
k=1

where wi(u) = ku.



Signature and Action-Angle variables

Elementary Coord. Change:
(Qk, Pr)  <+— (0, Ji)

Hamiltonian in new coords.:
0. @)
Hy =3 [ on(w) wp(w) Jy(u,t) du,
k=1

where wi(u) := |ku| and o, (u) := sign(kuey).
Poisson bracket:

s OF 6GG 0G O F
(Foy =3 [ ( - )du.
r—1 R 5‘9k5<]k 59k5Jk

Continuum eigenmodes have signature. Finite DOF, Krein-Moser says opposite signature
needed for bifurcations: colliding w;(A) — instability. VlIasov: unstable modes emerge where
signatures meet.



Works for Class of Lie-Poisson Hamiltonian Systems: Recall

Hamiltonian (energy):

HI) = Hy + Hy = [ P2h1(2) C() + 5 [P [ a2 C(2)ha(z, =) €()

Lie-Poisson Bracket:

(PG — / 25 ¢ [5F 5G]

5C 8¢

Equation of Motion:

Casimir Invariants:

Cfel = [ d= (o)



Lie-Poisson Hamiltonian Normal Form

Equilibria:
8C_ . | OH _
815—0—{4-)[_]}—[ Ca 8<]_ [Ceage]

1 DOF Integrability:

= (g,p) +— (0,J) = (Ce(J),E(J)) or (e(&e) =
Hammerstein IE:
Ee(2) = h1(2) + [ a2 ho(2,2)) Ge(Eel(2))

Linear EOM:

C C

"‘ [(, &)+ [¢e,E] =0 or _|_ Q(J ) dCeag

T dJ o6’

where Q(J) :=d&c/dJ, £ = [zd?2 ho(z,2) E(2') in terms of (6, J)



Linear Operator Problem

Fourier series:

é—’ — Z Ck(J) eik@—ikwt
k

Eigenvalue problem:
LG 1= Q) — € ERICk] = w ke,
with
£.(J) = Z/%k,k/(l I (') dJ’
k/

where L;.: B — B, Banach space B, eigenvalue w, and Hk,k/(J, J") comes from ho.

Partition the spectrum of L. ¢ = opUocUoyr. (i) w € gp, point spectrum, if £}, —wZ is not
one-one, where 7 is the identity operator. (ii) w € op, residual spectrum, if the range of
L, — wZ is not dense in B. (iii) w € o, continuous spectrum, if the inverse of (L — wZ),
defined on its range, is unbounded.

This partition convenient because if o, is null, then the approximate or Weyl spectrum
corresponds to op U oc. Assume purely oc , via energy-Casimir, e.g.



Generalized G-transform

Associate Integral Equation:

E(J,0) = 3 My w(J, Juw) + Z/ Ew (T, J) Fi (S, T, Jw) dJ'
K/ k'
where
Hy o (1) — Hi o ()
Q(J") — Q2(Jw)

Frep (1 I, Jw) i= Ce(J")

well-behaved enough for Fredholm theory.

Transform:

Cé(J)gk(Ja Jw)

Q(J) . Q(Jw) gk(JW7t> dea

Grlgrl (J,6) := fi (D) g (1) + f

with

GDE )

R N
L 10 T R



Generalized G-transform: Inverse & Identities

Transform Inverse:

1 R Cé(Jw)gk(Ja Jw)
PO T S I B oY) BT

where |ex(J)]2 = ()2 + (e1)? and €l (Jw) := &, (Ju, Jw)CL(Jw) /2 ().

Grlfel (Ju, t) = F.(J, 1) dJ

That G o G = Id follows from Poincaré-Bertrand theorem on the interchange of the order
of integration for singular integrals.

Transform Identities:
/

GG () = QUGG ) + 1 k|2( J0)

! G0 € ) i

and

GulclE () = 5 QD I d

Shown by techniques similar to those used for verifying the inverse.




General Canonization and Diagonalization

Hamiltonian:
Ee(J)

2
o 9

H, = 02H 4+~ / 470 C"(C) (5¢)2 = 62H — = / dJdo

B , o L)
— _kzk:///djdj Ck(‘])Hkk’(J J)Ck/(J) — — Z/ JCG(J) C—ka
Poisson bracket:
oF 0G s OF oG 0G OF
FGly = [dOdT (e(J) |—, —| = k dJe :
(F,G} = [d0d7 G >[ 5 5c] 2 fare <6ck6<_k 6<k5c_k>
Linear dynamics:
oc -
% {¢,Hr}r,



General Canonization and Diagonalization Cont.

Canonization:

0k (7, ) :=<k<J,t>,pk<J,t>=<—jk(<‘];” 5 (FGL =Y [d] (
€ k=1

OF 0G  O0G 5F>
Sqropr  0qrdpr)
Diagonalization:

Fla.Pl= Y [dIP(DCIa()  (ami) < (Qu P
k=1

Type-2 mixed variable generating functional again.

6F|q, P]
pr(J) =

6qx(J)

Hamiltonian in New Coords:

0F[q, P]
6P (J)

= GM[P)(J) and Qu(J) = = Glgl(J) .

o= Y ik a7y i — arsl] = S ik [ a7 P (Gleier - GIEGIQ)
k=1 k=1

= -y /dJikQ(J)Qk(J)Pk(J)-
k=1



Continuation

e Investigation of the consequences of the signature of the continuous spectrum; i.e. proof
of a kind of Krein-Moser theorem in a Banach space setting where embedded discrete
modes emerge from negative o.. (George Hagstrom Ph.D. 2011)

e Investigate the theory of adiabatic invariants in this infinite dimensional Hamiltonian con-
text by e.g. adding explicit time dependence to the Hamiltonian.

e Develop analog of Birkhoff's nonlinear normal forms for our class of infinite dimensional
Hamiltonian systems with continuous spectra. (Thomas Yudichak Ph.D. 2001)

e Obtain our class of infinite dimensional Hamiltonian mean-field systems by reduction from
kinetic theory BBGKY, other.

e Investigate the role played by G-transform in an infinite-dimensional in the setting of func-
tional phase space tangent bundle geometry. Symplectomorphism algebra? C-Morphism?



A Collection of Talk References (P. Morrison Nov. 2022)

Here is a list of papers that contain some of the things I talked about. Unfortunately the material is spread over
many papers. All can be downloaded from my web page http://www.ph.utexas.edu/~morrison

The BBGKY hierarchy paper with Marsden and Weinstein that Matt spoke about is [1].

The G-transform for diagonalizing the Vlasov-Poisson system was introduce for physicists in [2], with embedded point
spectrum in [3]. The rigorous version was published in [4].

The technique for assigning a signature to the continuous spectrum was introduced in the refs above, with a rigorous
analog of the Hamiltonian-Hopf (Krein-Moser) bifurcation with a signed continuous spectrum given in [5]. A tutorial
treatment is in [6, 7].

Application of the G-transform to the 2-dimensional incompressible Euler equation is given in [8, 9].
The general form of the G-transform for a large class of mean-field Lie-Poisson systems is given in [10].
The Lie-Poisson-Moyal description of quantum mechanics using the Wigner function was given in [11].

Mean-field Hamilton-Jacobi theory for Vlasov and other theories appeared early in [12] and continued in [13-15] . A
summary intended for mathematicians was given in [16]. A survey of various formulations of Vlasov is given in [17].

A description of Vlasov where the mixed variable generating function is replaced by a Lie series to reduce noncanonical
Vlasov to a symplectic leaf is given in [18]
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