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Geometry of metriplectic 4-brackets: with Michael Updike

pjm & M. Updike, arXiv:2306.06787v2 [math-ph]

→ Theory of thermodynamically consistent theories!



Thermodynamic Consistency – Examples

Navier-Stokes is inconsistent:

∂tv = −v · ∇v − 1

ρ0
∇p+ ν∇2v , ∇ · v = 0 ⇒ p[v]

H =
∫

Ω
ρ0 |v|2/2 and Ḣ ≤ 0

Thermodynamic Navier-Stokes is consistent (Eckart 1940):

∂tv = −v · ∇v − 1

ρ
∇p+

1

ρ
∇ · T ← T viscous stress tensor

∂tρ = −∇ · (ρv)

∂ts = −v · ∇s− 1

ρT
∇ · q +

1

ρT
T : ∇v , q = −κ∇T ← T heat flux

H =
∫

Ω
ρ |v|2/2 + ρU(ρ, s) , Ḣ = 0 and S =

∫
Ω
ρs → Ṡ ≥ 0



Theories & Models → Dynamics

Goal:

Predict the future or explain the past ⇒

ż = V (z) , z ∈ Z , Phase Space

Ultimately a dynamical system. Vector fields on manifold.

Maps, ODEs, PDEs, etc.

Whence vector field V ?

• Fundamental parent theory (microscopic, N interacting gravitating or charged particles,

BBGKY hierarchy, Vlasov-Maxwell system, ...). Identify small parameters, rigorous asymptotics

→
Reduced Computable Model V .

• Phenomena based modeling using known properties, constraints, etc. used to intuit →
Reduced Computable Model V . ← structure can be useful.



Types of Vector Fields, V (z) (cont)

Only (?) Natural Split:

V (z) = VH + VD

• Hamiltonian vector fields, VH: conservative, properties, etc.

• Dissipative vector fields, VD: not conservative of something, relaxation/asymptotic stability,

etc.

General Hamiltonian Form:

finite dim→ VH = J
∂H

∂z
or VH = J δH

δψ
←∞ dim

where J(z) is Poisson tensor/operator and H is the Hamiltonian. Basic product decomposition.

General Dissipation:

VD =?... → VD = G
∂F

∂z

Why investigate? General properties of theory. Build in thermodynamic consistency. Geom-

etry? Useful for computation.



Codifying Dissipation – Some History

Is there a framework for dissipation akin to the Hamiltonian formulation for nondissi-

pative systems?

Rayleigh (1873): d
dt

(
∂L
∂q̇ν

)
−
(
∂L
∂qν

)
+
(
∂F
∂q̇ν

)
= 0

Linear dissipation e.g. of sound waves. Theory of Sound.

Gay-Balmaz & Yoshimura (2017) (C. Eldred, 2020):

Lagrangian variational formulation with constraints.

Cahn-Hilliard (1958): ∂n
∂t = ∇2δF

δn = ∇2
(
n3 − n−∇2n

)
Phase separation, nonlinear diffusive dissipation, binary fluid ..

Other Gradient Flows: ∂ψ
∂t = G δFδψ

Otto, Ricci Flows, Poincarè conjecture on S3, Perelman (2002)...



Metriplectic Dynamics
(Metric ∪ Symplectic Flows)

• Formalism for natural split of vector fields

• Enforces thermodynamic consistency: Ḣ = 0 the 1st Law and Ṡ ≥ 0 the 2nd Law.

• Other invariants? E.g., collision operators preserve, mass, momentum, .... There exists some

theory for building in, but won’t discuss today.

• Encompassing 4-bracket theory: “curvature” as dissipation

Ideas of Casimirs are candidates for entropy, multibracket, curvature, etc. in pjm (1984).

Metriplectic in pjm (1986).



Hamiltonian Review

Poisson Bracket: {f, g}



Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: (q, p)

Hamiltonian function: H(q, p) ← the energy

Equations of Motion:

ṗα = −∂H
∂qα

, q̇α =
∂H

∂pi
, α = 1,2, . . . N

Phase Space Coordinate Rewrite: z = (q, p) , i, j = 1,2, . . . 2N

żi = J ijc
∂H

∂zj
= {zi, H}c , (J ijc ) =

(
0N IN
−IN 0N

)
,

Jc := Poisson tensor, Hamiltonian bi-vector, cosymplectic form



Noncanonical Hamiltonian Structure

Sophus Lie (1890) −→ PJM (1980) −→ Poisson Manifolds etc.

Noncanonical Coordinates:

żi = {zi, H} = J ij(z)
∂H

∂zj

Noncanonical Poisson Bracket:

{f, g} =
∂f

∂zi
J ij(z)

∂g

∂zj

Poisson Bracket Properties:
antisymmetry −→ {f, g} = −{g, f}
Jacobi identity −→ {f, {g, h}}+ {b, {h, f}}+ {h, {f, g}} = 0
Leibniz −→ {fh, g} = f{h, g}+ {h, g}f

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs
(Lie’s distinguished functions!)



Poisson Brackets – Flows on Poisson Manifolds

Definition. A Poisson manifold Z has bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)

st C∞(Z) with { , } is a Lie algebra realization, i.e., is

• bilinear,
• antisymmetric,
• Jacobi, and
• Leibniz, i.e., acts as a derivation ⇒ vector field.

Geometrically C∞(Z) ≡ Λ0(Z) and d exterior derivative.

{f, g} = 〈df, Jdg〉 = J(df,dg) .

J the Poisson tensor/operator. Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH, i.e.,

żi = J ij(z)
∂H(z)

∂zj
, Z ′s coordinate patch z = (z1, . . . , zN)

Because of degeneracy, ∃ functions C st {f, C} = 0 for all f ∈ C∞(Z). Casimir invariants (Lie’s
distinguished functions!).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J ⇒ Casimirs:

{f, C} = 0 ∀ f : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Metriplectic 4-Bracket: (f, k; g, n)



Why a 4-Bracket?

• Two slots for two fundamental functions: Hamiltonian, H, and Entropy (Casimir), S.

• There remains two slots for bilinear bracket: one for observable one for generator (F?) s.t.

Ḣ = 0 and Ṡ ≥ 0.

• Provides natural reductions to other bilinear & binary brackets.

• The three slot brackets of pjm 1984 were not trilinear. Four needed to be multilinear.



The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):

( · , · ; · , · ): Λ0(Z)× Λ0(Z)× Λ0(Z)× Λ0(Z)→ Λ0(Z)

For functions f, k, g, n ∈ Λ0(Z)

(f, k; g, n) := R(df,dk,dg,dn) ,

In a coordinate patch the metriplectic 4-bracket has the form:

(f, k; g, n) = Rijkl(z)
∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
. ← quadravector?

• A blend of my previous ideas: Two important functions H and S, symmetries, curvature idea,

multilinear brackets.

• Manifolds with both Poisson tensor, J ij, and compatible quadravector Rijkl, where S and H

come from Hamiltonian part.



Metriplectic 4-Bracket Properties

(i) R-linearity in all arguments, e.g,

(f + h, k; g, n) = (f, k; g, n) + (h, k; g, n)

(ii) algebraic identities/symmetries

(f, k; g, n) = −(k, f ; g, n)

(f, k; g, n) = −(f, k;n, g)

(f, k; g, n) = (g, n; f, k)

(iii) derivation in all arguments, e.g.,

(fh, k; g, n) = f(h, k; g, n) + (f, k; g, n)h

which is manifest in coordinates. Here, as usual, fh denotes pointwise multiplication. Symmetries

of algebraic curvature without cyclic identity. Often see Rl ijk or Rlijk but not Rlijk!

Minimal Metriplectic if above and

(iv) positive semidefiniteness

(f, g; f, g) ≥ 0



Metriplectic 4-Bracket Properties

(i) R-linearity in all arguments, e.g,

(f + h, k; g, n) = (f, k; g, n) + (h, k; g, n)

(ii) algebraic identities/symmetries

(f, k; g, n) = −(k, f ; g, n)

(f, k; g, n) = −(f, k;n, g)

(f, k; g, n) = (g, n; f, k)

(f, k; g, n) + (f, g;n, k) + (f, n; k, g) = 0 ← not needed

(iii) derivation in all arguments, e.g.,

(fh, k; g, n) = f(h, k; g, n) + (f, k; g, n)h

which is manifest in coordinates. Here, as usual, fh denotes pointwise multiplication. Symmetries
of algebraic curvature without cyclic identity. Often see Rl ijk or Rlijk but not Rlijk!
Minimal Metriplectic if above and
(iv) positive semindefiniteness

(f, g; f, g) ≥ 0



1980s Binary 2-Brackets and Dissipation

Ingredients:

Binary Brackets (Poisson and Dissipative) + Generators

ż = {z,H}+ ((z,F))

If (( ·, ·)) Leibniz & bilinear

żi = J ij
∂H

∂zj
+Gij

∂F
∂zj

where

(( , )): C∞(Z)× C∞(Z)→ C∞(Z)

What is F and what are the algebraic properties of (( , ))?



Metriplectic 2-Bracket
(pjm 1984,1984,1986)

• (f, g) symmetric, bilinear, appropriately degenerate

• Casimirs of noncanonical PB { , } are ‘candidate’ entropies. Election of particular S ∈
{Casimirs} ⇒ thermodynamic equilibrium (relaxed) state.

• Generator: F = H + S ← “Free Energy”

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = {H,F}+ (H,F) = 0 + (H,H) + (H,S) = 0

Foliate Z by level sets of H, with (H, f) = 0 ∀ f ∈ C∞(Z).

• 2nd Law: entropy production

Ṡ = {S,F}+ (S,F) = (S, S) ≥ 0

Lyapunov relaxation to the equilibrium state. Dynamics solves the equilibrium variational
principle: δF = δ(H + S) = 0.



Metriplectic 4-Bracket Reduction to 2-Bracket

Symmetric 2-bracket:

(f, g)H = (f,H; g,H) = (g, f)H

Dissipative dynamics:

ż = (z, S)H = (z,H;S,H)

Energy conservation:

(g,H)H = (H, g)H = 0 ∀ g .

Entropy dynamics:

Ṡ = (S, S)H = (S,H;S,H) ≥ 0

Metriplectic 4-brackets → metriplectic 2-brackets of 1984, 1986!



Metriplectic 4-Bracket: Encompassing Definition of Dissipation

• Lots of geometry on Poisson manifolds with metric or connection. Emerges naturally.

• If Riemannian, entropy production rate is positive contravariant sectional curvature. For

σ, η ∈ Λ1(Z), entropy production by

Ṡ = K(σ, η) := (S,H;S,H) ,

where the second equality follows if σ = dS and η = dH.



Binary Brackets for Dissipation circa 1980 →

• Symmetric Bilinear Brackets (pjm 1980 → . . . , IFS report 1983, published 1984 reduced

MHD)

• Antisymmetric Bracket (possibly degenerate) (Kaufman and pjm 1982)

• Metriplectic Dynamics (pjm 1984, 1984, 1986, . . . Kaufman 1984 had no degeneracy)

• Double Brackets (Vallis, Carnevale, Young, Shepherd; Brockett, Bloch ... 1989)

• GENERIC (Grmela 1984, with Oettinger 1997, . . . ) Binary but not Symmetric and not

Bilinear ⇔ Metriplectic Dynamics!



4-Bracket Reduction to K-M Brackets
(Kaufman and Morrison 1982)

K-M done for plasma quasilinear theory.

Dynamics:

ż = [z,H]S = (z,H;S,H)

Bracket Properties:

[f, g]S = (f, g;S,H)

• bilinear

• antisymmetric, possibly degenerate

• energy conservation and entropy production

Ḣ = [H,H]S = 0 and Ṡ = [S,H]S ≥ 0 ⇒ z 7→ zeq



4-Bracket Reduction to Double Brackets
(Vallis, Carnevale; Brockett, Bloch ... 1989)

Interchanging the role of H with a Casimir S:

(f, g)S = (f, S; g, S)

Can show with assumptions

(C, g)S = (C, S; g, S) = 0

for any Casimir C. Therefore Ċ = 0.

Practical tool for equilibria computation → Beautiful geometry with Fernandes-Koszul connec-

tion!



4-Bracket Reduction to 2-Brackets ≡ GENERIC
(Grmela 1984, with Öttinger 1997)

• Grmela 1984 bracket for Boltzmann not bilinear and not symmetric, unlike metriplectic 2-
bracket.

GENERIC Vector Field in terms of dissipation function Ξ(z, z∗):

żi = Y iS =
∂Ξ(z, z∗)
∂z∗i

∣∣∣∣∣
z∗=∂S/∂z

.

Special Case:

Ξ(z, z∗) =
1

2

∂S

∂zi
Gij(z)

∂S

∂zj
⇒ żi = Y iS = Gij(z)

∂S

∂zj
,

• General Case: there exists a bracket and procedure (pjm & Updike) for linearizing and
symmetrizing ⇒

GENERIC (1997) ≡ Metriplectic (1984,1986)!



Existence – General Constructions

• For any Riemannian manifold ∃ metriplectic 4-bracket. This means there is a wide class of

them, but the bracket tensor does not need to come from Riemann tensor only needs to satisfy

the bracket properties.

• Methods of construction? We describe two: Kulkarni-Nomizu and Lie algebra based. Goal is

to develop intuition like building Lagrangians.



Construction via Kulkarni-Nomizu Product

Given σ and µ, two symmetric rank-2 tensor fields operating on 1-forms (assumed exact) df,dk

and dg,dn, the K-N product is

σ©∧ µ (df,dk,dg,dn) = σ(df,dg)µ(dk,dn)

− σ(df,dn)µ(dk,dg)

+ µ(df,dg)σ(dk,dn)

− µ(df,dn)σ(dk,dg) .

Metriplectic 4-bracket:

(f, k; g, n) = σ©∧ µ(df,dk,dg,dn) .

In coordinates:

Rijkl = σikµjl − σilµjk + µikσjl − µilσjk .



Lie Algebras and Lie-Poisson Brackets

Lie Algebras: Denoted g, is a vector space (over R,C, for us R) with binary, bilinear product

[·, ·] : g× g→ g. In basis {ei}, [ei, ej] = c k
ij ek. Structure constants c k

ij . For example so(3), which

has A× (B ×C) + B × (C ×A) + C × (A×B) ≡ 0.

Lie-Poisson Brackets: special noncanonical Poisson brackets associated with any Lie algebra,

g.

Natural phase space g∗. For f, g ∈ C∞(g∗) and z ∈ g∗.

Lie-Poisson bracket has the form

{f, g} = 〈z, [∇f,∇g]〉
=

∂f

∂zi
c
ij
k zk

∂g

∂zj
, i, j, k = 1,2, . . . ,dim g

Pairing < , >: g∗ × g→ R, zi coordinates for g∗, and c
ij
k structure constants of g. Note

J ij = c
ij
k zk .



Lie Algebra Based Metriplectic 4-Brackets

• For structure constants ckls:

(f, k; g, n) = cijrc
kl
s g
rs ∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
.

Lacks cyclic symmetry, but ∃ procedure to remove torsion (Bianchi identity) for any symmetric

‘metric’ grs. Dynamics does not see torsion, but manifold does.

• For grsCK = crlk c
sk
l the Cartan-Killing metric, torsion vanishes automatically. Completely

determined by Lie algebra.

• Covariant connection ∇ : X× X→ X. A contravariant connection D : Λ1(Z)× Λ1(Z)→ Λ1(Z)

satisfying Koszul identities, but Leibniz becomes Dα(fγ) = fDαγ + J(α)[f ]γ where J(α)[f ] =

αiJ
ij∂f/∂zj is a 0-form that replaces the term X(f) (Fernandes, 2000). Here α, β, γ ∈ Λ1(Z),

f ∈ Λ0(Z). Add a metric, build 4-bracket like curvature from connection.



Examples

• finite-dimensional

• 1+1 fluid theory

• 3+1 fluid theory

• kinetic theory



Free Rigid Body (pjm Physica D 1986)

Angular momenta (L1, L2, L3), Lie-Poisson bracket with Lie algebra so(3), cijk = −εijk.

Hamiltonian:

H =
(L1)2

2I1
+

(L2)2

2I2
+

(L3)2

2I3
principal moments of inertia, Ii Casimir

C = ||L||2 = (L1)2 + (L3)2 + (L3)2 = S ,

Euler’s equations:

L̇i = {Li, H}

“Thermodynamics” → design a system s.t. Ḣ = 0 and Ṡ ≥ 0 (or Ṡ ≤ 0) .



“Thermodynamical” Free Rigid Body (cont)

Growing entropy sphere Ṡ ≥ 0 at fixed energy ellipsoid Ḣ = 0



“Thermodynamical” Free Rigid Body (cont)2

Use K-N product. Choose σij = µij = gij ⇒

Rijkl = K
(
gikgjl − gilgjk

)
,

Riemannian space form with constant sectional curvature K.

Assume Euclidean gives metriplectic 4-bracket:

(f, k; g, n) = K
(
δikδjl − δilδjk

) ∂f
∂zi

∂k

∂zj
∂g

∂zk
∂n

∂zl
,

Metriplectic 2-bracket:

(f, g)H = (f,H; g,H)

Precisely bracket and dynamics of pjm 1986!

L̇i = {Li, H}+ (Li, S)H = {Li, H}+ (Li, H;S,H)



Infinite Dimensions – Field Theories ∂f/∂z → δF/δχ

Multi-component fields:

χ(z, t) =
(
χ1(z, t), χ2(z, t), . . . , χM(z, t)

)
, z ∈ D

Metriplectic 4-bracket:

(F,G;K,N) =
∫
dNz

∫
dNz′

∫
dNz′′

∫
dNz′′′R̂ijkl(z, z′, z′′,z′′′)

× δF

δχi(z)

δG

δχj(z′)
δK

δχk(z′′)
δN

δχl(z′′′)
Fréchet derivative:

δF [χ; η] =
d

dε
F [χ+ εη]

∣∣∣∣
ε=0

=
∫
D
dNz

δF [χ]

δχi
ηi

δF/δχ the functional (variational) derivative (a gradient)

R̂ijkl(z, z′, z′′, z′′′) defined as distribution, an operator (e.g. a pseudo-differential ...) acting on

the functional derivatives.



1D fluid u(x, t): 1+ 1 + (1) Field Theory

Again use K-N product with operators Σ and M

(F,K;G,N) =
∫
R
dxW

(
Σ(Fu, Gu)M(Ku, Nu)

−Σ(Fu, Nu)M(Ku, Gu) +M(Fu, Gu)Σ(Ku, Nu)

−M(Fu, Nu)Σ(Ku, Gu)
)
,

W a constant and Fu = δF/δu, etc.
Choose

M(Fu, Gu) = FuGu

Σ(Fu, Gu)(x) = ∂Fu(x)H[Gu](x) + ∂Gu(x)H[Fu](x) ,

∂ = ∂/∂x and H the Hilbert transform ⇒

(F,G)H = (F,H;G,H) =
∫
R
dxW

(
∂FuH[Gu] + ∂GuH[Fu]

)
.

ut = ...(u, S)H = −2W H[∂u] .

Ott & Sudan 1969 fluid model of electron Landau damping (Hammett-Perkins 1990). H → ∂ ⇒
viscous dissipation



Thermodynamic Navier-Stokes (Eckart, 1940) χ = {ρ, σ = ρs,M = ρv}

K-N again:

M(Fχ, Gχ) = FσGσ

Σ(Fχ, Gχ) = Λ̂ijkl ∂jFMi
∂kGMl

+ a∇Fσ · ∇Gσ
∂i := ∂/∂xi with general isotropic Cartesian tensor of order 4

Λ̂ikst = αδikδst + β(δisδkt + δitδks) + γ(δisδkt − δitδks)
Construct

(F,G)H = (F,H;G,H) → χt = {χ,H}+ (χ, S)H ⇒
using S =

∫
d3x ρs and H =

∫
d3x

(
ρ|v|2/2 + ρU(ρ, s)

)
∂tv = −v · ∇v − 1

ρ
∇p+

1

ρ
∇ · T ← T viscous stress

∂tρ = −∇ · (ρv)

∂ts = −v · ∇s− 1

ρT
∇ · q +

1

ρT
T : ∇v , q = −κ∇T

Reproduces pjm 1984!



Kinetic Theory Collision Operator

Phase space z = (x, v), density f(z, t)

Define operator on w : R6 → R (at fixed time)

P [w]i =
∂w(z)

∂vi
− ∂w(z′)

∂v′i

(F,K;G,N) =
∫
d6z

∫
d6z′ G(z, z′)

× (δ©∧ δ)ijkl P
[
Ff
]
i
P
[
Kf

]
j
P
[
Gf
]
k
P
[
Nf

]
l
,

where simplest K-N

(δ©∧ δ)ijkl = 2(δikδjl − δilδjk) .

with S = − ∫ dzf ln f

(f,H;SH) =??

Landau-Lenard-Balescu collision operator!

Metriplectic 2-bracket (f, g)H in pjm 1984 again!



Final Comments

• See PJM & M. Updike, arXiv:2306.06787v2 [math-ph] for many more examples, finite and

infinite.

• Useful for thermodynamically consistent model building, e.g., multiphase flow (Navier-Stokes-

Cahn-Hiliard) with many constitutive relation effects (with A. Zaidni) and inhomogeneous

collision operators for plasma (with N. Sato).

• Given that double brackets and metriplectic brackets have been used for computation of

equilibria, metriplectic 4-bracket can be a new tool for equilibria. ← Easy to maintain Rijkl

symmetries in semi-discrete projection.

• New kind of structure to preserve: Symplectic, Poisson, FEEC, .... metriplectic 2-bracket,

metriplectic 4-bracket?



Existing Computational Uses

• Poisson Integrators: symplectic on leaf and exact leaf preservation; GEMPIC, Kraus et al. for

Vlasov-Maxwell system. B. Jayawardana, P. J. Morrison, and T. Ohsawa, Clebsch Canonization

of Lie–Poisson Systems, J. Geometric Mechanics 14, 635 (2022).

Dynamical extremization with constraints:

• Simulated Annealing: Double brackets for equilibria

• Metriplectic relaxation



Double Bracket for Vortex States 1989

Good Idea:

Vallis, Carnevale, and Young, Shepherd (1989,1990)

dF
dt

= {F , H}+ ((F , H)) = ((F ,F)) ≥ 0

where

((F,G)) =
∫
d3x

δF

δχ
J 2δG

δχ

Lyapunov function, F, yields asymptotic stability to rearranged equilibrium.

• Maximizing energy at fixed Casimir: Except only works sometimes, e.g., limited to circular

vortex states ....



Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a variational principle with constraints

for equilibria states.

Coordinates:

żi = ((zi, H)) = J ikgklJ
jl ∂H

∂zj

symmetric, definite, and kernel of J.

Ċ = 0 with Ḣ ≤ 0



Simulated Annealing with Generalized (Noncanonical) Dirac Brackets

Dirac Bracket:

{F,G}D = {F,G}+
{F,C1}{C2, G}
{C1, C2}

− {F,C2}{C1, G}
{C1, C2}

Preserves any two incipient constraints C1 and C2.

Our New Idea:

Do simulated Annealing with Generalized Dirac Bracket

((F,G))D =
∫
dxdx′ {F, ζ(x)}D G(x,x′) {ζ(x′), G}D

Preserves any Casimirs of {F,G} and Dirac constraints C1,2

For implementation with contour dynamics see PJM (with Flierl) Phys. Plasmas 12 058102
(2005).



2D Euler Vortex States (Flierl and pjm 2011)
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Vorticity contours. The three-fold symmetric initial condition finds tri-polar state using Dirac

bracket Simulated Annealing.



Double Bracket SA for Reduced MHD

M. Furukawa, T. Watanabe, pjm, and K. Ichiguchi, Calculation of Large-Aspect-Ratio Tokamak

and Toroidally-Averaged Stellarator Equilibria of High-Beta Reduced Magnetohydrodynamics

via Simulated Annealing, Phys. Plasmas 25, 082506 (2018).

High-beta reduced MHD (Strauss, 1977) given by

∂U

∂t
= [U,ϕ] + [ψ, J]− ε∂J

∂ζ
+ [P, h]

∂ψ

∂t
= [ψ,ϕ]− ε∂ϕ

∂ζ
∂P

∂t
= [P, ϕ]

Extremization

F = H +
∑
i

Ci + λiPi ,→ equilibria, maybe with flow

Cs Casimirs and P s dynamical invariants.



Sample Double Bracket SA equilibria
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Nested Tori are level sets of ψ; q gives pitch of helical B-lines.



Double Bracket SA for Stability

M. Furukawa and P. J. Morrison, Stability analysis via simulated annealing and accelerated

relaxation , Phys. Plasmas, 2022.

Since SA searches for an energy extremum, it can also be used for stability analysis when

initiated from a state where a perturbation is added to an equilibrium. Three steps:

1) choose any equilibrium of unknown stability

2) perturb the equilibrium with dynamically accessible (leaf) perturbation

3) perform double bracket SA

If it finds the equilibrium, then is is an energy extremum and must be stable



Sample Double Bracket SA unstable equilibria

(a) Radial profile of =U�2,1. (b) Radial profile of ='�2,1.

(c) Radial profile of < �2,1. (d) Radial profile of < J�2,1.

FIG. 11: Radial profiles of the (m, n) = (�2, 1) components are plotted at several times

during the SA evolution. The perturbation amplitudes decreased in time.

FIG. 12: Poloidal rotation velocity v✓ profile.
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(a) Radial profile of <U�2,1. (b) Radial profile of =U�2,1.

(c) Radial profile of <'�2,1. (d) Radial profile of ='�2,1.

(e) Radial profile of < �2,1. (f) Radial profile of = �2,1.

(g) Radial profile of < J�2,1. (h) Radial profile of = J�2,1.

FIG. 16: Radial profiles of the (m, n) = (�2, 1) components are plotted at several times

during the SA evolution. The perturbation amplitudes grew in time.
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Metriplectic Simulated Annealing.

Camilla Bressen Ph.D.

TUM & Max Planck, Garching, Germany

Vortex states and MHD equilibria
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(a) Color plot. (b) Scatter plot.

Figure 6.7: Relaxed state for the test case euler-ilgr. The same as in Figure 6.2, but for the
collision-like operator.

The relaxed state is presented in Figure 6.9: from both the color plot (a) and scatter
plot (b) we see that the initial condition has relaxed to a solution in accordance with the
variational principle.

For this test case, the results strongly suggest that the relaxation to the state of con-
strained minimum entropy, which corresponds to the solution of the variational principle,
appears to be a feature of the collision-like operator, rather than being caused by numerical
dissipation, as we observed for the diffusion-like operator.
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(a) Color plot. (b) Scatter plot.

Figure 6.29: Relaxed state for the gs-imgc test case. The same as in Figure 6.23, but for the
collision-like operator and the case of the Czarny domain discussed in Section A.4.2. With respect to Figure
6.27(b) for the diffusion-like operator, we see from (b) that the agreement between the relaxed state and the
prediction of the variational principle is better.



Computation Summary

• Poisson Integrators

• Dirac Double Bracket Simulated Annealing for Equilibria and Stability

• Metriplectic Simulated Annealing for Equilibria
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