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Dynamics — Theories — Models

Goal:
Predict the future or explain the past =

z=V(z2), z € Z, Phase Space
A dynamical system. Maps, ODEs, PDEs, etc.

Whence vector field V7

e Fundamental parent theory (microscopic, N interacting grav-
itating or charged particles, BBGKY hierarchy, VIasov-Maxwell
system, ...). Identify small parameters, rigorous asymptotics —
Reduced Computable Model V.

e Phenomena based modeling using known properties, constraints,
etc. used to intuit —
Reduced Computable Model V. <« structure can be useful.




Types of Vector Fields, V(z)

ODEs: 1-parameter group of trans. t — +oco. Reversible?

PDEs etc.: group or semigroup. diffusive t — oco. Irreversible?

Hamiltonian ODE or PDE: group t — +oc0. Reversible?

Time Reversal Symmetry: canonical coords (q,p), equation same
if p— —p and t - —t. Example of discrete symmetry.

Not all Hamiltonian system have time reversal symmetry!

Conservative: Hamiltonian (autonomous), dissipative or non-dissipative,
asymptotic stability?




Types of Vector Fields, V(z) (cont)

Only (?) Natural Split:

V(z) =V +Vp
e Hamiltonian vector fields, Vg: conservative, properties, etc.

e Dissipative vector fields, Vp: not conservative of something,
relaxation/asymptotic stability, etc.

General Hamiltonian Form:
OH OH
<
where J(z) is Poisson tensor/operator and H is the Hamiltonian.

Basic product decomposition.
General Dissipation:

Vp =7... — Vp =G —
0z

Why investigate? General properties of theory. Useful for com-
putation.



Overview

I. Review Hamiltonian systems via noncanonical Poisson brackets

II. Review previous bracket formalisms for dissipation

III. Encompassing metriplectic 4-bracket theory



I. Noncanonical Hamiltonian Dynamics



Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: (q,p)
Hamiltonian function: H(q,p) + the energy

Equations of Motion:

. OH i OH
pz_ aqz7 q_apz7

i=1,2,...N

Phase Space Coordinate Rewrite: z2=1(q,p), o, B=1,2,...2N

. OH 0 I
a _ jaf _ Qo afy N N
2 JC 825’8— {Z 7H}C) (JC ) - ( _IN ON ) 9

Je := Poisson tensor, Hamiltonian bivector, cosymplectic form




Noncanonical Hamiltonian Structure

Sophus Lie (1890) — PJM & Greene (1980, noncanonical) —
A. Weinstein (1983, Poisson Manifolds etc.)

Noncanonical Coordinates:
OH
— {Za,H} — Jaﬁ(Z)ﬁ
y

Noncanonical Poisson Bracket:

(4,8} = 200G

Poisson Bracket Properties:

antisymmetry — {A,B} = —{B, A}

Jacobi identity —  {A,{B,C}}+{B,{C,A}}+{C,{A,B}} =0
Leibniz — {AC, B} = A{C,B}+ {C,B}A

G. Darboux: detJ #0 — J — J. Canonical Coordinates

Sophus Lie: detJ = 0 —— Canonical Coordinates plus Casimirs
(Lie's distinguished functions!)




Flow on Poisson Manifold

Definition. A Poisson manifold Z is differentiable manifold with
bracket

{,}:C®(Z)x CF(Z) - C(2)

st C°°(Z) with {, } is a Lie algebra realization, i.e., is

i) bilinear,

i) antisymmetric,

iii) Jacobi, and

iv) Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH.

Because of degeneracy, 3 functions C st {A,C} = 0 for all
A e C*®(Z). Called Casimir invariants (Lie's distinguished func-
tions!).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J = Casimirs:

{A,C} =0 VA:Z—-R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C = Cons'k




Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson
bracket that are associated with any Lie algebra, say g.

Natural phase space g*. For f,g € C*°(g*) and z € g*.

Lie-Poisson bracket has the form

{f,9} (2, [V f,Vg])
3f 17 dg

-C
51 kkg,j

Pairing <, >:g"xg —> R, 2 coordmates for g*, and cijk structure

i.j, k=12 ... dimg

constants of g. Note JY = ¢’ kzk



Classical Field Theory for Classical Purposes

Dynamics of matter described by

e Fluid models

— Euler’'s equations, Navier-Stokes, ...
e Magnetofluid models

— MHD, XMHD (Hall, electron mass physics), 2-fluid, ...
e Kinetic theories

— Vlasov-Maxwell, Landau-Lenard-Balescu, gyrokinetics, ...

e Fluid-Kinetic hybrids
— MHD 4 hot particle kinetics, gyrokinetics, ...

Applications:

atmospheres, oceans, fluidics, natural and laboratory plasmas

Hamiltonian and Dissipative structures are organizing principles




Noncanonical MHD (pjm & Greene 1980)

Equations of Motion:

Force
Density

Entropy
Ohm's Law

Magnetic Field

Energy:

ov
P ot
@

ot
0s

ot

E

0B
ot

1
—pv - Vvo—-—Vp+—-J x B
c

—V - (pv)

—v - Vs

+ vXxB=nJ=nVXxB~xO0
—VXxE=Vx(vxB)

H = /D 43 @/OI’UI2 + pU(p,s) + %|B|2>

Thermodynamics:

oU
_ 20U
P=0y

T = — or = kp'
Js P P



Noncanonical Bracket:

(FG} — _/d3 ([(sF 5G 5GV5F]_I_[5F (vaX(SF)]

dp v  dp v v 0 ov

oF  _oG oG _oF
n Vs [ v V—]
P ov §s  ov 0s

16F _6G 186G _GF
+ B [—— vV 2 v ]

p OV 0B pov B
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Dynamics:

dp 0s X 0B

bl H = H — = HY and — ={B,H!.
ot {:07 }7 ot {37 }7 Ot {’U, }7 ot { ? }
Densities:

M =pv o .= ps Lie — Poisson form



MHD Dynamics and Invariance

Dynamical (field) Variables:

\lj .: (p,U,S,B)

Poisson Bracket:

— [ 30 oG

iRGr = /Dd T5wd (W oy
oW OH
b — W)~
= =W

Poisson Operator J(W): matrix differential operator

Algebra of (Galilean) Invariance:

P = /Dd3a:pv, L = /Dd3a:p’r X v, etc. <+ 10 parameters

Realization on functionals.



Casimir Invariants and the Kernel of 7:

Recall J0H/dyp, Casimirs determined by J for any H.

Casimir Invariants:

{F,cYMHD — g vV functionals F.

Casimirs Invariant entropies:

Cg= /d?’af; pf(s), f arbitrary

Casimirs Invariant helicities:

CB=/d3xB-A, CV=/d3:1:B-v

Helicities have topological content, linking etc.



II. Some Bracket Dissipation Formalisms



Binary Brackets for Dissipation circa 1980 —

e Symmetric Bilinear Brackets (pjm 1980 —. . . unpublished, 1984
reduced MHD)

e Degenerate Antisymmetric Bracket (Kaufman and pjm 1982)
e Metriplectic Dynamics (pjm 1984,1984, 1986, ... ANK 1984)

e Generic (Grmela 1984, with Oettinger 1997, ...) &
Metriplectic Dynamics! Binary but not Symmetric or Bilinear

e Double Brackets (Vallis, Carnevale; Brockett, Bloch ... 1989)



Brackets for Dissipation

Two ingredients: Binary or Bilinear Bracket 4+ Generator
z={z,H}+ (2, F)
where

(,):C¥(Z)xCF(2) = C?(2)

What is F' and what are the algebraic properties of (, )?



K-M Brackets 1982

Done for plasma quasilinear theory.

Dynamics:

z=|z,H]g

Properties:

e bilinear
e antisymmetric, degenerate
e entropy production

S:[S,H]SZO =

Z|_>Zeq



Double Bracket 1989

Good Idea.
Vallis, Carnevale, and Young, Shepherd (1989,1990)

Y = (F )+ (F, 1)) = (F, 7)) 2 0

where

oF _~0G
(F.&)) = [ a7

Lyapunov function, F, yields asymptotic stability to rearranged
equilibrium.

e Maximizing energy at fixed Casimir: Works fine sometimes,
but limited to circular vortex states ....




Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a varia-
tional principle with constraints for equilibria states.

Coordinates (pjm &Flierl 2011):

: : . - OH
&= ((4 H)) = J¥*gy it —
0zJ

symmetric, definite, and kernel of J.

C =0 with H <0



Metriplectic Dynamics pjm 1984, 1986

A dynamical model of thermodynamics that ‘captures’:.

e First Law: conservation of energy

e Second Law: entropy production

e Proposed as a general type of dynamical system in pjm 1984,
1986 and many examples satisfying axioms were given.

e Kaufman 1984 had all but degeneracy in (, ).



Metriplectic Dynamics — Entropy, Degeneracies,
and 1st and 2nd Laws

e Casimirs of noncanonical PB {, } are ‘candidate’ entropies.
Election of particular S € {Casimirs} = thermal equilibrium
(relaxed) state.

e Generator: F=H+ S

e 1st Law: identify energy with Hamiltonian, H, then

H={H,F}+ (H,F) =0+ (H,H) + (H,5) =0
Foliate Z by level sets of H, with (H,A) =0V A€ C®(Z2).

e 2nd Law: entropy production

S={S,F}+ (5F)=(5,5)>0

Lyapunov relaxation to the equilibrium state. Dynamics solves
the equilibrium variational principle: §F = 6(H + S) = 0.




Geometical Definition

A metriplectic system consists of a smooth manifold Z, two
smooth vector bundle maps J,G : T*Z — T Z covering the iden-
tity, and two functions H,S € C°°(Z), the Hamiltonian and the
entropy of the system, such that

(i) A{f,g}:=(df,J(dg)) is a Poisson bracket; J* = —J;

(i) (f,g9) := (df,G(dg)) is a positive semidefinite symmetric
bracket, i.e., (,) is R-bilinear and symmetric, so G* = &, and
(f,f) >0 for every '€ C°(Z2);

(iii)  {S,f}=0and (H,f) =0 for all fe&C>®(=2)
<— J(dS) =G(dH) = 0.



Two examples of pjm 1984



Viasov with Collisions

of _ of
E——U-Vf—a-vvf—l—a)c

where

Collision term — g)
ot/ ¢

could be, Landau, Lenard Balescu, etc.

Conserves, mass, momentum, energy,

dH

dt
and makes entropy

d 1 > . .
= — interaction = 0
dt/va U

s

d
E——@/flnmzo



Landau Collision Operator

Metriplectic bracket:

(A, B) /dz/dz [81}15514 0 oA ] T; (=, 2"

f(z)  ov;of(Z)
0 0B B 0 OB
Ov; 0 f(z) 5”02- df(2)

T;i(2,2") = wij(z,2') f(2) f () /2

Conservation and Lyapunov:
w;i;i(z,2") = w;i(z,2")  w;j(z,2) =w;;(z,2)  giw;; = 0 with g; = v;—v;
Landau kernel:

(L) — (57,3 - 9293/92)5(}( — X,)/g

Entropy:
SU1 = [dz ()



Ideal fluid with viscous heating and thermal conductivity.

-7
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where the GPB, {,}, is given by

P

o [@X§]+E.[§zﬁg_ﬁg§]>d%. o

Upon inserting the quantities shown on the right hand side of Eqs. (18)-(20),
into Eq. (21) and performing the indicated operations one obtains, as noted,
the ' inviedd adiabatic limit of Egs. (10)-(12).

The Casimirs for the bracket given by Eq. (21) are the total mass
M= J [¢] d3x and a generalized entropy functional 5} = J of (s) d3x,
where £ is an arbitrary function of s. .The latter quantity is added to
the energy [Eq. (17)] to produce the generalized free energy of Eq. (4):
F=H+ 8.

In order to obtain the dissipative terms, we introduce the following

symmetric bracket:

\

T :
4T A 3—(35——]-3-—’5@—”&; , 23) !
o o |

FIG. 10. This . ...

11



III. Metriplectic 4-Brackets for Dissipation



T he Metriplectic 4-Bracket

4-bracket on O-forms (functions):
(-5, ) A2 x AP(2) x AP (2) x AP(2) = AP (2)
For functions f,k,g, and n
(f,k;g,n) .= R(df,dk,dg,dn),

In a coordinate patch the metriplectic 4-bracket has the form:

df ok dg on

5215927 5 F 9l < quadravector?
< y4 y4 <

(f,k;g,n) = RV (2)

e A blend of ideas: Two important functions H and S, symme-
tries, curvature idea, multilinear brackets all in pjm 1984, 1986.
e Manifolds with both Poisson tensor J and compatible metric,
g Or connection.



Metriplectic 4-Bracket Properties

(i) linearity in all arguments, e.g,

(f +h, ki g,n) = (h,k;g,n) + (h,k;g,n)

(ii) algebraic identities/symmetries

(fikig,m) = —(k, fig,m)
(fikig,m) = —(f,kin,g)
(fikig,m) = (g,n; f,k)
(f,kig,m) + (f,g;n,k)+ (f,n;k,g) =0 + not needed

(iii) derivation in all arguments, e.qg.,

(fh,k; g,n) = f(h,k;g,n) + (f, k; g,n)h

which is manifest when written in coordinates. Here, as usual, fh
denotes pointwise multiplication. Symmetries of algebraic curvature.

Although R';., or Ry, but not R"F. Metriplectic Minimum.



Reduction to Metriplectic 2-Bracket

Symmetric 2-bracket:

Dissipative dynamics:

z = (Zas)Ha

Energy conservation:

([ H)ypg=H, f)g=20 Vf.

Entropy dynamics:

Metriplectic 4-brackets — metriplectic 2-brackets of 1984, 1986!



Reduction to K-M

Kaufman & pjm, Phys. Lett. A 88, 405 (1982).

K-M dynamics:
P [zi, Hlg,

K-M bracket emerges from any metriplectic 4-bracket:

[f 9ls = (f,9:5 H)

T hus,
Lf,9ls = —lg, fls
and
H=[H Hlg=(H,H;S,H) =0,
and

S =1[S,H]s = (S,H;S,H) >0



Reduction to Double Brackets

Interchanging the role of H with a Casimir S:

(f,9)s = (f,5:9,5)

Can show with assumptions (Koszul construction)

(C,9)s =(C,S;9,8)=0
for any Casimir C. Therefore C = 0.



Reduction to not bilinear and nonsymmetric
Generic

e EXists a procedure for linearizing and symmetrizing.



Easy Construction: K-N Product

Given o and u, two symmetric rank-2 tensor fields operating on
1-forms df,dk and dg,dn, the Kulkarni-Nomizu (K-N) product is

c® u(df,dk,dg,dn) = o(df,dg) pu(dk,dn)
— o(df,dn) u(dk,dg)
+ w(df,dg) o(dk,dn)
— u(df,dn) o(dk,dg) .

Metriplectic 4-bracket:

(f,k,g,m) = @® p(df,dk,dg,dn) .

In coordinates:

Rkl — ik il _ il ik 4 ikl il gk



K-N Product — Landau Collision Operator

Metriplectic 4-bracket on functionals:
(F,K;G,N) = //d6z d®Z' G(z,2")
X(Z @ M)(FfaKfa Gf,Nf)(Z,Z/>

= /dGZ/d6z/Q(z, )

x (6@ &)V P |Fy| P [Kf]jP[Gf]kP[Nf}l’

where

/
_OF and P, = 23 aw(f )
5f (9’02' ov;

1

FfZ

(f,H;g,H) = (f,g)y becomes metriplectic 2-bracket (pjm 1984).

(f,H;S, H) = Landau collision operator!



Metriplectic 4-Bracket: Encompassing
Definition of Dissipation

e Lots of geometry on Poisson manifolds with metric or connec-
tion.

e Entropy production and positive contravariant sectional curva-
ture. For o,n € A1(2), entropy production by

K(o,m) = (S, H;5,H),

where the second equality follows if o =dS and n = dH.



