
On the General Metriplectic Formalism
for Describing Dissipation and its

Computational Uses

Philip J. Morrison

Department of Physics
Institute for Fusion Studies, and ODEN Institute

The University of Texas at Austin
morrison@physics.utexas.edu

http://www.ph.utexas.edu/∼morrison/

JETC2023 Salerno, Italy
June 14, 2023

Collaborators: G. Flierl, M. Furukawa, C. Bressan, O. Maj, M.
Kraus, E. Sonnendrücker, ...
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Dynamics – Theories – Models

Goal:

Predict the future or explain the past ⇒

ż = V (z) , z ∈ Z , Phase Space

A dynamical system. Maps, ODEs, PDEs, etc.

Whence vector field V ?

• Fundamental parent theory (microscopic, N interacting grav-

itating or charged particles, BBGKY hierarchy, Vlasov-Maxwell

system, ...). Identify small parameters, rigorous asymptotics →
Reduced Computable Model V .

• Phenomena based modeling using known properties, constraints,

etc. used to intuit →
Reduced Computable Model V . ← structure can be useful.



Types of Vector Fields, V (z)

ODEs: 1-parameter group of trans. t→ ±∞. Reversible?

PDEs etc.: group or semigroup. diffusive t→∞. Irreversible?

Hamiltonian ODE or PDE: group t→ ±∞. Reversible?

Time Reversal Symmetry: canonical coords (q, p), equation same

if p→ −p and t→ −t. Example of discrete symmetry.

Not all Hamiltonian system have time reversal symmetry!

Conservative: Hamiltonian (autonomous), dissipative or non-dissipative,

asymptotic stability?



Types of Vector Fields, V (z) (cont)

Only (?) Natural Split:

V (z) = VH + VD

• Hamiltonian vector fields, VH: conservative, properties, etc.

• Dissipative vector fields, VD: not conservative of something,
relaxation/asymptotic stability, etc.

General Hamiltonian Form:

finite dim→ VH = J
∂H

∂z
or VH = J

δH

δψ
←∞ dim

where J(z) is Poisson tensor/operator and H is the Hamiltonian.
Basic product decomposition.

General Dissipation:

VD =?... → VD = G
∂F

∂z

Why investigate? General properties of theory. Useful for com-
putation.



Overview

I. Review Hamiltonian systems via noncanonical Poisson brackets

II. Review previous bracket formalisms for dissipation

III. Encompassing metriplectic 4-bracket theory



I. Noncanonical Hamiltonian Dynamics



Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: (q, p)

Hamiltonian function: H(q, p) ← the energy

Equations of Motion:

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1,2, . . . N

Phase Space Coordinate Rewrite: z = (q, p) , α, β = 1,2, . . . 2N

żα = Jαβc
∂H

∂zβ
= {zα, H}c , (Jαβc ) =

(
0N IN
−IN 0N

)
,

Jc := Poisson tensor, Hamiltonian bivector, cosymplectic form



Noncanonical Hamiltonian Structure

Sophus Lie (1890) −→ PJM & Greene (1980, noncanonical) −→
A. Weinstein (1983, Poisson Manifolds etc.)

Noncanonical Coordinates:

żα = {zα, H} = Jαβ(z)
∂H

∂zβ

Noncanonical Poisson Bracket:

{A,B} =
∂A

∂zα
Jαβ(z)

∂B

∂zβ

Poisson Bracket Properties:
antisymmetry −→ {A,B} = −{B,A}
Jacobi identity −→ {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0
Leibniz −→ {AC,B} = A{C,B}+ {C,B}A

G. Darboux: detJ 6= 0 =⇒ J → Jc Canonical Coordinates

Sophus Lie: detJ = 0 =⇒ Canonical Coordinates plus Casimirs
(Lie’s distinguished functions!)



Flow on Poisson Manifold

Definition. A Poisson manifold Z is differentiable manifold with
bracket

{ , } : C∞(Z)× C∞(Z)→ C∞(Z)

st C∞(Z) with { , } is a Lie algebra realization, i.e., is

i) bilinear,
ii) antisymmetric,
iii) Jacobi, and
iv) Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH.

Because of degeneracy, ∃ functions C st {A,C} = 0 for all
A ∈ C∞(Z). Called Casimir invariants (Lie’s distinguished func-
tions!).



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J ⇒ Casimirs:

{A,C} = 0 ∀ A : Z → R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

inamorata



Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson

bracket that are associated with any Lie algebra, say g.

Natural phase space g∗. For f, g ∈ C∞(g∗) and z ∈ g∗.

Lie-Poisson bracket has the form

{f, g} = 〈z, [∇f,∇g]〉

=
∂f

∂zi
c
ij
k zk

∂g

∂zj
, i, j, k = 1,2, . . . ,dim g

Pairing < , >: g∗×g→ R, zi coordinates for g∗, and c
ij
k structure

constants of g. Note J ij = c
ij
k zk.



Classical Field Theory for Classical Purposes

Dynamics of matter described by

• Fluid models

– Euler’s equations, Navier-Stokes, ...

• Magnetofluid models

– MHD, XMHD (Hall, electron mass physics), 2-fluid, ...

• Kinetic theories

– Vlasov-Maxwell, Landau-Lenard-Balescu, gyrokinetics, ...

• Fluid-Kinetic hybrids

– MHD + hot particle kinetics, gyrokinetics, ...

Applications:

atmospheres, oceans, fluidics, natural and laboratory plasmas

Hamiltonian and Dissipative structures are organizing principles



Noncanonical MHD (pjm & Greene 1980)

Equations of Motion:

Force ρ
∂v

∂t
= −ρv · ∇v −∇p+

1

c
J ×B

Density
∂ρ

∂t
= −∇ · (ρv)

Entropy
∂s

∂t
= −v · ∇s

Ohm′s Law E + v ×B = ηJ = η∇×B ≈ 0

Magnetic Field
∂B

∂t
= −∇×E = ∇× (v ×B)

Energy:

H =
∫
D
d3x

(
1

2
ρ|v|2 + ρU(ρ, s) +

1

2
|B|2

)

Thermodynamics:

p = ρ2∂U

∂ρ
T =

∂U

∂s
or p = κργ



Noncanonical Bracket:

{F,G} = −
∫
D
d3x

[δF
δρ
∇
δG

δv
−
δG

δρ
∇
δF

δv

]
+

[
δF

δv
·
(
∇× v

ρ
×
δF

δv

)]

+
∇s
ρ
·
[
δF

δv
· ∇

δG

δs
−
δG

δv
· ∇

δF

δs

]
+ B ·

[
1

ρ

δF

δv
· ∇

δG

δB
−

1

ρ

δG

δv
· ∇

δF

δB

]

+ B ·
[
∇
(

1

ρ

δF

δv

)
·
δG

δB
−∇

(
1

ρ

δG

δv

)
·
δF

δB

] .
Dynamics:

∂ρ

∂t
= {ρ,H} ,

∂s

∂t
= {s,H} ,

∂v

∂t
= {v, H} , and

∂B

∂t
= {B, H} .

Densities:

M := ρv σ := ρs Lie− Poisson form



MHD Dynamics and Invariance

Dynamical (field) Variables:

Ψ := (ρ,v, s,B)

Poisson Bracket:

{F,G} =
∫
D
d3x

δF

δΨ
J (Ψ)

∂G

∂Ψ
.

∂Ψ

∂t
= {Ψ, H} = J (Ψ)

∂H

∂Ψ

Poisson Operator J (Ψ): matrix differential operator

Algebra of (Galilean) Invariance:

P =
∫
D
d3xρv , L =

∫
D
d3xρ r × v , etc. ← 10 parameters

Realization on functionals.



Casimir Invariants and the Kernel of J :

Recall J δH/δψ, Casimirs determined by J for any H.

Casimir Invariants:

{F,C}MHD = 0 ∀ functionals F.

Casimirs Invariant entropies:

CS =
∫
d3x ρf(s) , f arbitrary

Casimirs Invariant helicities:

CB =
∫
d3xB ·A , CV =

∫
d3xB · v

Helicities have topological content, linking etc.



II. Some Bracket Dissipation Formalisms



Binary Brackets for Dissipation circa 1980 →

• Symmetric Bilinear Brackets (pjm 1980 –. . . unpublished, 1984

reduced MHD)

• Degenerate Antisymmetric Bracket (Kaufman and pjm 1982)

• Metriplectic Dynamics (pjm 1984,1984, 1986, . . . ANK 1984)

• Generic (Grmela 1984, with Oettinger 1997, . . . ) ⇔
Metriplectic Dynamics! Binary but not Symmetric or Bilinear

• Double Brackets (Vallis, Carnevale; Brockett, Bloch ... 1989)



Brackets for Dissipation

Two ingredients: Binary or Bilinear Bracket + Generator

ż = {z,H}+ (z, F )

where

( , ) : C∞(Z)× C∞(Z)→ C∞(Z)

What is F and what are the algebraic properties of ( , )?



K-M Brackets 1982

Done for plasma quasilinear theory.

Dynamics:

ż = [z,H]S

Properties:

• bilinear

• antisymmetric, degenerate

• entropy production

Ṡ = [S,H]S ≥ 0 ⇒ z 7→ zeq



Double Bracket 1989

Good Idea:

Vallis, Carnevale, and Young, Shepherd (1989,1990)

dF
dt

= {F , H}+ ((F , H)) = ((F ,F)) ≥ 0

where

((F,G)) =
∫
d3x

δF

δχ
J 2δG

δχ

Lyapunov function, F, yields asymptotic stability to rearranged

equilibrium.

• Maximizing energy at fixed Casimir: Works fine sometimes,

but limited to circular vortex states ....



Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a varia-

tional principle with constraints for equilibria states.

Coordinates (pjm &Flierl 2011):

żi = ((zi, H)) = J ikgklJ
jl ∂H

∂zj

symmetric, definite, and kernel of J.

Ċ = 0 with Ḣ ≤ 0



Metriplectic Dynamics pjm 1984, 1986

A dynamical model of thermodynamics that ‘captures’:.

• First Law: conservation of energy

• Second Law: entropy production

• Proposed as a general type of dynamical system in pjm 1984,

1986 and many examples satisfying axioms were given.

• Kaufman 1984 had all but degeneracy in ( , ).



Metriplectic Dynamics – Entropy, Degeneracies,
and 1st and 2nd Laws

• Casimirs of noncanonical PB { , } are ‘candidate’ entropies.
Election of particular S ∈ {Casimirs} ⇒ thermal equilibrium
(relaxed) state.

• Generator: F = H + S

• 1st Law: identify energy with Hamiltonian, H, then

Ḣ = {H,F}+ (H,F ) = 0 + (H,H) + (H,S) = 0

Foliate Z by level sets of H, with (H,A) = 0 ∀ A ∈ C∞(Z).

• 2nd Law: entropy production

Ṡ = {S, F}+ (S, F ) = (S, S) ≥ 0

Lyapunov relaxation to the equilibrium state. Dynamics solves
the equilibrium variational principle: δF = δ(H + S) = 0.



Geometical Definition

A metriplectic system consists of a smooth manifold Z, two

smooth vector bundle maps J,G : T ∗Z → TZ covering the iden-

tity, and two functions H,S ∈ C∞(Z), the Hamiltonian and the

entropy of the system, such that

(i) {f, g} := 〈df, J(dg)〉 is a Poisson bracket; J∗ = −J;

(ii) (f, g) := 〈df,G(dg)〉 is a positive semidefinite symmetric

bracket, i.e., ( , ) is R-bilinear and symmetric, so G∗ = G, and

(f, f) ≥ 0 for every F ∈ C∞(Z);

(iii) {S, f} = 0 and (H, f) = 0 for all f ∈ C∞(Z)

⇐⇒ J(dS) = G(dH) = 0.



Two examples of pjm 1984



Vlasov with Collisions

∂f

∂t
= −v · ∇f − a · ∇vf +

∂f

∂t

)
c

where

Collision term →
∂f

∂t

)
c

could be, Landau, Lenard Balescu, etc.

Conserves, mass, momentum, energy,

dH

dt
=

d

dt

∫ 1

2
mv2f + interaction = 0

and makes entropy

dS

dt
= −

d

dt

∫
f ln(f) ≥ 0



Landau Collision Operator

Metriplectic bracket:

(A,B) =
∫
dz
∫
dz′

[
∂

∂vi

δA

δf(z)
−

∂

∂v′i

δA

δf(z′)

]
Tij(z, z

′)

×

 ∂

∂vj

δB

δf(z)
−

∂

∂v′j

δB

δf(z′)


Tij(z, z

′) = wij(z, z
′)f(z)f(z′)/2

Conservation and Lyapunov:

wij(z, z
′) = wji(z, z

′) wij(z, z
′) = wij(z

′, z) giwij = 0 with gi = vi−v′i
Landau kernel:

w
(L)
ij = (δij − gigj/g2)δ(x− x′)/g

Entropy:

S[f ] =
∫
dz f ln(f)



Ideal fluid with viscous heating and thermal conductivity.

av. 
-2:. = {v. JI} at 1.' 

.92= {p,J/} 3t 

as {s ,.I/} -= at 

where the GPB, {,}, is given by 

of 
01; 

-7-

(18) 

(19) 

(20) 

(21) 

Upon inserting the quantities shown on the right hand side of Eqs. (18)-(20), 

into Eq. (21) and performing the indicated operations one obtains, as noted, 

the' in'vicd.d adiabatic limit of Eqs. (10)-(12). 

The Casimirs for the bracket given by Eq. (21) are the total mass 

M = J P d3x and a generalized entropy functional $f 

where f is an arbitrary function of s .. The latter quantity is added to 

the energy [Eq. (17)] to produce the generalized free energy ofEq. (4): 

In order to obtain the dissipative terms, we introduce the following 

symmetric bracket: 

(23) 

FIG. 10. This . ...
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III. Metriplectic 4-Brackets for Dissipation



The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):

( · , · ; · , · ): Λ0(Z)× Λ0(Z)× Λ0(Z)× Λ0(Z)→ Λ0(Z)

For functions f, k, g, and n

(f, k; g, n) := R(df,dk,dg,dn) ,

In a coordinate patch the metriplectic 4-bracket has the form:

(f, k; g, n) = Rijkl(z)
∂f

∂zi
∂k

∂zj
∂g

∂zk
∂n

∂zl
. ← quadravector?

• A blend of ideas: Two important functions H and S, symme-

tries, curvature idea, multilinear brackets all in pjm 1984, 1986.

• Manifolds with both Poisson tensor J and compatible metric,

g or connection.



Metriplectic 4-Bracket Properties

(i) linearity in all arguments, e.g,

(f + h, k; g, n) = (h, k; g, n) + (h, k; g, n)

(ii) algebraic identities/symmetries

(f, k; g, n) = −(k, f ; g, n)

(f, k; g, n) = −(f, k;n, g)

(f, k; g, n) = (g, n; f, k)

(f, k; g, n) + (f, g;n, k) + (f, n; k, g) = 0 ← not needed

(iii) derivation in all arguments, e.g.,

(fh, k; g, n) = f(h, k; g, n) + (f, k; g, n)h

which is manifest when written in coordinates. Here, as usual, fh

denotes pointwise multiplication. Symmetries of algebraic curvature.

Although Rl ijk or Rlijk but not Rlijk. Metriplectic Minimum.



Reduction to Metriplectic 2-Bracket

Symmetric 2-bracket:

(f, g)H = (f,H; g,H) = (g, f)H

Dissipative dynamics:

ż = (z, S)H ,

Energy conservation:

(f,H)H = (H, f)H = 0 ∀ f .

Entropy dynamics:

Ṡ = (S, S)H = (S,H;S,H) ≥ 0

Metriplectic 4-brackets → metriplectic 2-brackets of 1984, 1986!



Reduction to K-M

Kaufman & pjm, Phys. Lett. A 88, 405 (1982).

K-M dynamics:

żi = [zi, H]S ,

K-M bracket emerges from any metriplectic 4-bracket:

[f, g]S := (f, g;S,H)

Thus,

[f, g]S = −[g, f ]S

and

Ḣ = [H,H]S = (H,H;S,H) = 0 ,

and

Ṡ = [S,H]S = (S,H;S,H) ≥ 0



Reduction to Double Brackets

Interchanging the role of H with a Casimir S:

(f, g)S = (f, S; g, S)

Can show with assumptions (Koszul construction)

(C, g)S = (C, S; g, S) = 0

for any Casimir C. Therefore Ċ = 0.



Reduction to not bilinear and nonsymmetric
Generic

• Exists a procedure for linearizing and symmetrizing.



Easy Construction: K-N Product

Given σ and µ, two symmetric rank-2 tensor fields operating on

1-forms df,dk and dg,dn, the Kulkarni-Nomizu (K-N) product is

σ©∧ µ (df,dk,dg,dn) = σ(df,dg)µ(dk,dn)

− σ(df,dn)µ(dk,dg)

+ µ(df,dg)σ(dk,dn)

− µ(df,dn)σ(dk,dg) .

Metriplectic 4-bracket:

(f, k; g, n) = σ©∧ µ(df,dk,dg,dn) .

In coordinates:

Rijkl = σikµjl − σilµjk + µikσjl − µilσjk .



K-N Product → Landau Collision Operator

Metriplectic 4-bracket on functionals:

(F,K;G,N) =
∫ ∫

d6z d6z′ G(z, z′)

×(Σ©∧ M)(Ff ,Kf , Gf , Nf)(z, z′)

=
∫
d6z

∫
d6z′ G(z, z′)

× (δ©∧ δ)ijkl P
[
Ff
]
i
P
[
Kf

]
j
P
[
Gf
]
k
P
[
Nf

]
l
,

where

Ff :=
δF

δf
and P [w]i =

∂w(z)

∂vi
−
∂w(z′)

∂v′i

(f,H; g,H) = (f, g)H becomes metriplectic 2-bracket (pjm 1984).

(f,H;S,H) = Landau collision operator!



Metriplectic 4-Bracket: Encompassing
Definition of Dissipation

• Lots of geometry on Poisson manifolds with metric or connec-

tion.

• Entropy production and positive contravariant sectional curva-

ture. For σ, η ∈ Λ1(Z), entropy production by

K(σ, η) := (S,H;S,H) ,

where the second equality follows if σ = dS and η = dH.


