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e [ heory of thermodynamically consistent theories.
e An algorithm for constructing such theories.

e Use algorithm to construct consistent theories for 2-phase flow.
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T hermodynamic Consistency — Examples

Navier-Stokes (inconsistent):
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ov=—-v-Vv——-Vp+4+ -V -T <+ 7T viscous stress tensor ~ Vv

p p
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Thermodynamic Navier-Stokes (consistent) (Eckart 1940):
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pT pT

H=/9p|v|2/2—|—pu(p,s), H=0 and Sz/st — S>0







Cahn-Hilliard Equation (1958)

Equation of Motion:
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for concentration c.

“Free Energy’ .
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f=/d3x(cz—%+\Vc|2>;H—TS.

A phase separation (diffuse interface) solution:



Goal

Construct:

e Cahn-Hilliard U Navier-Stokes = Cahn-Hilliard - Navier-Stokes (CHNS)

e [ hermodynamically consistent with complete set of fluxes and affinities.



All Models Have Vector Fields, V(z)

Natural Split:
V(z) =Vg+Vp

e Hamiltonian vector fields, Vg: conservative, properties, etc.

e Dissipative vector fields, V: not conservative of something, relaxation/asymptotic stability,
etc.

General Hamiltonian Form:

OH OH
finite dim — VH:Ja—:{Z’H} or Vg =J— < oo dim
<

0

where J(z) is Poisson tensor/operator, {f, g} Poisson bracket, and H is the Hamiltonian.

General Dissipation:
0S

VD =7... — VD =G —
0z

Build in thermodynamic consistency: 1st law Hamiltonian H = 0 and 2nd law entropy S > O.



Building Theories - Traditional

Identify configuration space:
e Coordinates q € Q.

e Identify kinetic and potential energies, T and V.
e Construct Lagrangian:

L=T-V.

e Obtain Lagrange’'s equations of motion:

8£_d8£_0
dq dt 8

For both finite systems and field theories consider symmetries, etc.



Metriplectic Algorithim - 4 Steps

1. Identify dynamical variables defined on Q C R3: e.g. for CHNS

v = {v,p,s,c} or V = {m = pv,p,0 = ps,¢c = pc}

2. Propose energy and entropy functionals, H[W] and S[WV]; for CHNS*

a a
HY = /Q g\v|2 + pu(p, s, c) + %)\UFQ(VC) and S¢ = /Q ps + %)\SFQ(VC)

3. Find Poisson bracket {F,G} for which entropy S¢ is a Casimir invariant, {F, 5%} =0V F

4. Construct metriplectic 4-bracket (F, K; G, N) via Kulkarni-Nomizu product to obtain EoMs:

oV ={V H}+ (V,H;S H)
Result automatically Thermodynamically consistent!

* Here a € {0,1} is a parameter; I Euler homogenous deg 1 (Taylor 1992 weighted mean curvature surface
effects); when M(Ve) = |Ve|?, cf. F=H — TS of C-H.



Hamiltonian Review

Poisson Bracket: {f,g}



Hamilton’s Canonical Equations

Phase Space with Canonical Coordinates: (g,p)
Hamiltonian function: H(q,p) + the energy

Equations of Motion:

oH
0q®’

_on
8]704,

Do = g a=12...N

Phase Space Coordinate Rewrite: 2= (q,p), 1,57=1,2,...2N

r .. OH ) 0 T
T 711 — 7 — N N
< _JC aZ] {ZaH}Ca Je <_IN ON) )

Je := Poisson tensor, Hamiltonian bi-vector, cosymplectic form




Noncanonical Hamiltonian Structure

Sophus Lie (1890) — PJM (1980) — Poisson Manifolds etc.

Noncanonical Coordinates:

OH
¢ = {2% H} = J®(2)=—, a,b=1,72...M
Ozb
Noncanonical Poisson Bracket:
of
{f9}=-27"C )8 = J(2) #E e

Poisson Bracket Properties:

antisymmetry  —  {f,g9} = —{g, [}
Jacobi identity — {f,{g,h}} +{g,{h, f}} +{h, {f,9}} =0
Leibniz — {fh,9} = f{h,g} + {h,g}f

Jean Gaston Darboux: detJ 0 — J — J. Canonical Coordinates

Sophus Lie: detJ = 0 == Canonical Coordinates plus Casimirs (Lie's distinguished functions!)




Poisson Brackets — Flows on Poisson Manifolds

Definition. A Poisson manifold Z has bracket
{,}:C®(Z)xC®(Z) > C(2)

st C*°(Z) with {, } is a Lie algebra realization, i.e., is

e Dbilinear,

e antisymmetric,

([

o

Jacobi, and
LLeibniz, i.e., acts as a derivation = vector field.

Geometrically C®(2) = AP(2) and d exterior derivative.

{f,g} = {df,Jdg) = J(df,dg) .
J the Poisson tensor/operator. Flows are integral curves of noncanonical Hamiltonian vector
fields, JdH, i.e.,
OH(z)
0zb
Because of degeneracy, 3 functions C st {f,C} = 0 for all f € C°°(Z). Casimir invariants.

20 = JU(2) Z's coordinate patch z = (21, ..., 2M)



Poisson Manifold (phase space) Z Cartoon

Degeneracy in J = Casimirs:

{(f,C}=0 Vf:Z->R

Lie-Darboux Foliation by Casimir (symplectic) leaves:

C = COns‘L'




3. Gibbs-Euler Poisson Bracket Dynamics

Hamiltonian:

p|v|? ou >0u ou
H = / ’ 9 ) T = a ) — o) — A
o o tru (p;s,¢) P P=Pg M= 5

Poisson Bracket:
{Fxn::—/lanm-vam—f%vahy+pwh-vep—am-vmg

Q
Equations of Motion: +o[Fm-VGo —Gm - ViIo] +¢[Fm - VGz — Gm - VIE].

Ov=A{v,H} = —-v-Vv—-Vp/p, Op ={p,H} ==V - (pv),
oic={c¢c,H} = -V - (cv), oo ={o,H} = -V - (o v)
Casimir:
S=/ 501
QPS#

Coordinate Change:

a
ps? = ps + %)\SFQ(VC) : m,p,c unchanged.

Note F,, = 0F/dm, etc., functional derivatives.



Metriplectic 4-Bracket: (f,k;g,n)

Metriplectic Dynamics:

o={o,H}+ (0o,H;S,H)



Why a 4-Bracket?

e Two slots for two fundamental functions: Hamiltonian, H, and Entropy (Casimir), S.

e T here remains two slots for bilinear bracket: one for observable one for generator, F = H-TS,
s.t. H=0 and S > 0. Various generators have been tried.

e Provides natural reductions to other bilinear & binary brackets. T his theory includes all others.
E.g. metriplectic 2-bracket of 1984: (F,G)y = (F,H; G, H). Before a guess, now an algorithm!

e [ he three slot brackets of pjm 1984 were not trilinear. Four needed to be multilinear.




The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):
(-5, ) A2 x A2(2) x AO(2) x AP(2) = AP (2)
For functions f,k,g,n € A9(2)
(f,k;g,n) := R(df,dk,dg,dn),

In a coordinate patch the metriplectic 4-bracket has the form:

of 0k Og On
021027 OzF 9z

(f,k; g,n) = RIF(2) + quadravector?

e A blend of my previous ideas: Two important functions H and S, symmetries, curvature idea,
multilinear brackets.

e Manifolds with both Poisson tensor, J’ij, and compatible quadravector Riﬂ“l, where S and H
come from Hamiltonian part.



Metriplectic 4-Bracket Properties

(i) R-linearity in all arguments, e.qg,

(f +h kig,n) = (f,kig,n) + (h,k;g,n)

(ii) algebraic identities/symmetries

(fakrgan) — _(kafvgan)
(f7krg7n) — _(fakvnag)
(f,kig,n) = (g,n; [ k)

(iii) derivation in all arguments, e.g.,

(fh ki g,n) = f(h,kig,n) + (f, k; g,n)h

which is manifest when written in coordinates. Here, as usual, fh denotes pointwise multipli-
cation. Symmetries of algebraic curvature without cyclic identity. Often see Rlz.jk or Ry but

not R!%kI Minimal Metriplectic.



EXxistence — General Constructions

e For any Riemannian manifold 3 metriplectic 4-bracket. This means there is a wide class of
them, but the bracket tensor does not need to come from Riemann tensor only needs to satisfy

the bracket properties.

e Methods of construction? We describe two: Kulkarni-Nomizu and Lie algebra based. Goal is
to develop intuition like building Lagrangians.



Construction via Kulkarni-Nomizu Product

Given o and u, two symmetric rank-2 tensor fields operating on 1-forms (assumed exact) df, dk
and dg,dn, the K-N product is

o ®u(df,dk,dg,dn) = o(df,dg)pu(dk,dn)
— o(df,dn) u(dk,dg)
+ w(df,dg)o(dk,dn)
— p(df,dn)o(dk,dg) .
Metriplectic 4-bracket:
(f, ki g,n) = o @® u(df,dk,dg,dn) .
In coordinates:

Rkl — ik il _ il ik 4 ikl il gk



Lie Algebras and Lie-Poisson Brackets

Lie Algebras: Denoted g, is a vector space (over R,C, for us R) with binary, bilinear product

[,-]: gx g — g. In basis {e;}, [e;,e;] = cijk er. Structure constants cz-j’f. For example so(3), which

has Ax (BxC)+Bx(CxA)+C x(AxB)=0.

Lie-Poisson Brackets: special noncanonical Poisson brackets associated with any Lie algebra,
d.

Natural phase space g*. For f,g € C*°(g*) and z € g*.

Lie-Poisson bracket has the form

{f,9t = (= I[V[f,Vg])
= ——-C Zl—= Z,],k:1,2,,d|mg
Z

Pairing < , >: g* x g — R, z* coordinates for g*, and cijk structure constants of g. Note

JY = czjk 2L .



Lie Algebra Based Metriplectic 4-Brackets

e For structure constants c*.:

y 8f Ok Hg On
: — ij Kkl rs
(f, ki g,n) CHC 59 921920 52F 9

Lacks cyclic symmetry, but 3 procedure to remove torsion (Bianchi identity) for any symmetric
‘metric’ ¢"%. Dynamics does not see torsion, but manifold does.

o For gi$ = ¢ c*% the Cartan-Killing metric, torsion vanishes automatically. Completely
determined by Lie algebra.

e Covariant connection V: ¥ x X — X. A contravariant connection D: AL(2) x AL(2) = AL (2)
satisfying Koszul identities, but Leibniz becomes Dn(fv) = fDqovy + J(a)[f]y where J(a)[f] =
o; JUOf /020 is a 0-form that replaces the term X(f) (Fernandes, 2000). Here a,fS,v € ALN(2),
f e AN9(2). Add a metric, build 4-bracket like curvature from connection.



4. K-N Metriplectic 4-Brackets for CHNS

K-N Form:

M(dF,dR) = FsaGga,
S (dF,dG) = VFm : A1 : VGm + VFga- Ao - VGya + VLYF) - Az - LLG),

with pseudodifferential operator L2F 1= V(F5 + V- (p*As[EF5a) /p).

4-bracket:
(F.K:G,N)* = /Q% [ (K 0V Fan — FyaV EKm] A [NyaVGm — GgaV Nin]
+ %[KOaVFGa — FraVKga| - i+ |[NgaVGga — GgaV Nyal
+|KgaL3(F) = Fpal3(K)|-D-|Nyald(G) — Gal3(N)].



Equations of Motion - Case a =1, = |V

CHNS system for a = 1:
Orv = {v,Hl}l + (v,Hl; Sl,Hl)1
=—v-Vv—%V- [p1+/\fpr§®vc] —I—%V-(/=\:Vv),
op = {p, H'}' + (p, H'; S", H ) = =V - (pv),
o= {c, HY' + (e, HY:; st HDY = -V . (Gv) + V- (D-Vui),
ata‘ll'otal — {U‘ll'otalv Hl}l + (U‘ll'ota_lv Hl; Sl» Hl)l

1 K 1 _

1 _ 1 _
—I—fVV:/\:Vv—I—?VMl—-D-V,u}—.

Special case has H and S same as Guo and Lin, JFM (2015). But EoMs do not agree!
Ours generalizes theirs and conserves energy, theirs does not!



Equations of Motion - Case a = 0, general

CHNS for a = 0:
v = {v, H}® + (v, HY; 59, HO)°
1 1 —
P P

8p = {p, HO}° + (p, HY; SO, HO)? = —V - (pv)
8¢ ={¢, HO} O + (¢, H?; SO, HOY = —v . (Gv) + V- (D - V),
0 _ 0 0,0 0] 0. o0 0,0
atUTotal—{UTotalvH } +(‘7Tota_IvH , S, H )

_ 0 K 1 _

lo. . %. lo 0 7 0

Special case agrees with Anderson et al. Physica D (2000).



Conclusions

e Produced a general thermodynamically consistent CHNS system.
Se = (8% H*: S% H*)* = K(Sa HY) < sectional curvature

—/ [VV A Vv A+ VT R-VT 4Vl -D-Vul| >0.

e General system reduces to two thermodynamically consistent CHNS systems: Anderson et
al. yes, while Guo and Lin, almost.

Future Work?

e Apply algorithm to some plasma problem? Pellet injection, multi collisional species, comet
tails, dusty plasmas, etc.?



