
PHY–396 L. Mid-term Exam. Due Wednesday March 12, 2025.

This whole exam concerns a QFT comprising the following fields: A charged Dirac spinor ΨC(x)

(charge = −e), a neutral Dirac spinor ΨN (x), a charged pseudo-scalar Φ(x) (charge = −e),
and the electromagnetic field Aµ(x). The physical Lagrangian of the theory is

L = − 1
4FµνF

µν + DµΦ∗DµΦ − M2
SΦ∗Φ + ΨC(i6D −MC)ΨC + ΨN (i6∂ −MN )ΨN

− igΦ×ΨCγ
5ΨN − igΦ∗ ×ΨNγ

5ΨC − 1
4λ
(
Φ∗Φ

)2
.

(1)

Note: ΨN is electrically neutral, but it’s a Dirac spinor rather than Majorana spinor, so a

particle is different from an antiparticle. Just like a neutron is different from an antineutron.

1. [13 points] First, a few simple questions:

(a) Are there any renormalizable couplings one may add to the Lagrangian (1) without breaking

any symmetries of the theory? If yes, spell out such couplings; otherwise, explain why they

do not exist.

(b) Write down the bare Lagrangian of the quantum field theory — including all the countert-

erms needed to cancel the divergences.

(c) Write down all the relations between different counterterms’ coefficients due to symmetries

and/or Ward identities.

(d) Spell out the Feynman rules of the counterterm perturbation theory. Or rather, spell out all

propagators, physical vertices, and counterterm vertices of the theory, never mind the rest

of the Feynman rules.

Please use visually different lines for the neutral and the charged fermions’ propagators. For

example, black lines for the ΨN and red lines for the ΨC , or single lines for the ΨN and

double lines for the ΨC . Likewise, use visually different lines — for example, dotted rather

than solid — for the scalar propagators.

2. [42 points] Second, a lot of hard work: Calculate the UV-infinite parts of all the independent

counterterms at the one-loop order of the perturbation theory. Do not bother calculating the

UV-finite parts, even if they are IR-divergent — this would take you way too much time. To
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save more time, use the relations you wrote down in part 1(c): If two or more counterterms

are related by a symmetry and/or a Ward identity, calculate just one of those counterterms,

whichever you think is simpler.

For each independent counterterm, start by drawing all the relevant Feynman diagrams. If a

diagram was evaluated in class, in my notes, or in a homework, don’t waste your and my time

redoing the work, just quote the result and move on to the next diagram. For the remaining

diagrams — and there will be plenty of those — use dimensional regularization and work hard.

But if some part of the calculation is similar to what I wrote in the solutions or in the notes,

don’t reproduce my work but simply quote it and adapt it to your needs.

Many diagrams — especially those contributing to the divergence canceled by the δλ countert-

erm — are related by permutations of the external legs. Such symmetries can save you a lot of

work, but please be careful counting similar diagrams. Remember that Φ is different from Φ∗,

and ΨC is different from the ΨN . Consequently, the diagram counts and/or symmetry factors

are likely to be different from what you have seen in class or in the homeworks.

Here are some useful formulae for the dimensionally regulated momentum integrals: For any

logarithmic UV divergence,

if
N
D
→ C

(k2)2
for k2 →∞, then

∫
reg

d4k

(2π)4
N
D

=
iC

16π2
× 1

ε
+ finite. (2)

And here are some quadratic UV divergences:∫
reg

d4`

(2π)4
A

`2 −∆ + i0
= (A∆)× i

16π2
× 1

ε
+ finite, (3)

∫
reg

d4`

(2π)4
A`2 +B

[`2 −∆ + i0]2
= (2A∆ +B)× i

16π2
× 1

ε
+ finite, (4)

∫
reg

d4`

(2π)4
A(`2)2 +B`2 + C

[`2 −∆ + i0]3
= (3A∆ +B)× i

16π2
× 1

ε
+ finite. (5)

Note: The on-shell physical amplitudes are gauge invariant, but the off-shell loop diagrams and

the counterterms depend on the gauge you work in. To be consistent, you must use the same

gauge in all the calculations. Even the diagrams you use to calculate different counterterms

must be evaluated in the same gauge.
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? For extra credit (up to 10 points), allow for an arbitrary gauge parameter ξ and work out

how (the infinite parts of) all the counterterms depend on ξ.

• Otherwise, stick to a particular value of ξ and perform all calculation in that gauge for all

photon propagators in all diagrams. I recommend you use either Feynman gauge ξ = 1 or

Landau gauge ξ = 0: The Feynman gauge makes for an easier numerator algebra for all the

diagrams involving photon propagators; while in the Landau gauge many diagrams happen

to vanish — or at least their UV divergences vanish — and one can see that before shifting

the loop momenta or doing any integrals.

Advice: The hardest counterterm to calculate is δλ due to sheer number of one-loop diagrams

contributing to the 4-scalar amplitude. The next hardest are δφZ and δφM for the charged scalar

field; this time there are fewer diagrams, but they are harder to evaluate due to quadratic UV

divergence (in 4D). Make sure to allocate plenty of time for calculating these counterterms,

they take a lot of hard work.

3. [10 points] Third, calculate (to the one-loop order) the anomalous dimensions of all the fields

and the beta–functions for all the running couplings of the theory — e(E), g(E), and λ(E) —

as well as the fermion masses MC(E) and MN (E). Assume high energies E � all masses.

After all the hard work you did in part (2), this part should be simple. Remember: at the one-

loop level, the infinite part of a counterterm determines its dependence on the renormalization

energy scale E � masses according to

δ = (overall coefficient)×
(

1

ε
+ log

µ2

E2
+ a numeric constant

)
. (6)

Note: while the anomalous dimensions of the charged fields may be gauge-dependent, all the

beta-functions must be gauge invariant. So if you have calculated all the counterterms for a

general gauge parameter ξ and then ended up with a ξ-dependent beta-function, you must have

made a mistake somewhere (or perhaps several mistakes).

4. [35 points] Finally, consider the electromagnetic form factors F1(q
2) and F2(q

2) of the neutral

fermion ΨN .
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(a) First of all, explain the physical meaning of these form factors and what do they probe.

Also, explain why in the q2 → 0 limit, the F1(0) form factor must vanish but it’s OK to

have F2(0) 6= 0.

(b) Now let’s start calculating the F1(q
2) and the F2(q

2). Draw all Feynman diagrams con-

tributing to these form factors at the one-loop level and spell the resulting amplitudes as

momentum integrals,

ieΓµ(diagram) =

∫
d4k

(2π)4
(stuff). (7)

By the way, do any of the counterterms contribute at this level? Explain your answer.

(c) Show that the individual diagrams suffer from logarithmic UV divergences, but the diver-

gences cancel out from the net 1PI amplitude Γµ1 loop. If they do not, make sure you have

not forgotten a diagram and double-check your signs.

(d) Now comes the hard work of evaluating the diagrams: Introduce the Feynman parameters,

shift the loop momenta, simplify the numerators, reorganize them according to the form

factors F1 and F2, and finally integrate over the loop momenta. Throughout the calculation,

keep the fermionic external legs on-shell — including the ū(p′)Γµ(p′, p)u(p) context of the

amplitude, — but remember that MN 6= MC . Indeed, allow for general masses MN , MC ,

and MS and any off-shell q2.

Some stages of this calculation are going to be similar to what I did in my notes on the electron’s

form factors or in the solutions to homework#18, so quote my results and adapt them to

your situation instead of redoing my work. Here is another useful formula for calculating the

momentum integrals in D = 4− 2ε dimensions:∫
µ4−D dD`

(2π)D
A`2 +B

[`2 −∆ + i0]3
=

i

16π2

(
4πµ2

∆

)ε
Γ(ε)×

[(
1− ε

2

)
A − ε

2

B

∆

]
. (8)

At the end of this part of the problem, you should get formulae of the form

neutral
F1(q

2) =
g2

16π2

diagrams∑
i

∫
d(FP )F (i)

1 (q2;FP ; masses; ε), (9)

neutral
F2(q

2) =
g2

16π2

diagrams∑
i

∫
d(FP )F (i)

2 (q2;FP ; masses; ε), (10)
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where FP denote the Feynman parameters.

Your task is to work out the functions F (i)
1 and F (i)

2 for each diagram.

(e) Next, use the results of part (d) to calculate the magnetic dipole moment of the neutral

fermion. For general masses, you should get

m =
g2eS

16π2
H(MN ,MS ,MC) (11)

where H(masses) obtains from an integral of a rational function. To simplify the integral,

assume MC = MS while MN �MC : Show that for such masses

H ≈ 1

MC
× a non-zero number you should calculate, (12)

or in other words

ggyromagnetic(ΨN ) = (a number)× g2MN

MC
. (13)

(f) Now consider the electric form factor F1(q
2) and verify that it duly vanishes for q2 = 0. For

this part of the problem, keep the masses general and do not take the ε→ 0 limit.

Hint: For q2 = 0, the numerators and the denominators of the diagrams depend on only one

Feynman parameter z. Moreover, the ∆’s in the denominators of two diagrams are related

to each other as ∆1(z1) = ∆2(z2) for z2 = 1− z1. Check this relation, then use it to bring

the net F1(0) to the form

F1(0) =
g2

16π2
× (4πµ2)εΓ(ε)×

1∫
0

d

dz

(
z(1− z)

[∆(z)]ε

)
dz, (14)

where the integral indeed evaluates to zero.

(g) Finally, calculate the F1(q
2) form-factor in the limit of very large (−q2)� all masses2.

Hint: simply take the limit all masses → 0, fixed −q2 6= 0 of the functions F (i)
1 in eq. (9),

then sum up the diagrams and integrate over the Feynman parameters.

Your result should be non-zero. Note that by analyticity of the F1 as a function of q2, this

means that for generic values of q2 the electric form factor does not vanish. Instead, the F1

vanishes only for q2 = 0 (and perhaps also for some other discrete values of q2).
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