
COMPLEX AMPLITUDES and IMPEDANCES

Consider a harmonic alternating current of frequency ω flowing through some circuit,

I(t) = I0 cos(ωt+ φi). (1)

If the circuit is linear, then the voltage across the circuit would also be harmonic of the same

frequency omega,

V (t) = V0 cos(ωt+ φv), (2)

but if the circuit includes any capacitors or inductors, then the voltage and the current may

have different initial phases, φv 6= φi. The best way to handle such harmonic currents and

voltages — and the relations between them — is to combine their amplitudes and the initial

phases into complex amplitudes

Î = I0 × e−iφi and V̂ = V0 × e−iφv . (3)

Note that for any real phase ϕ the complex exponential e−iϕ has real part

Re e−iϕ = cosϕ. (4)

Consequently, we may describe the time dependence of a harmonic current (1) as

I(t) = I0 × cos(ωt+ φi) = Re
[

I0 × e−i(ωt+φ0)
]

= Re
[

I0 × e−iφi × e−iωt
]

= Re
[

Î × e−iωt
]

,

(5)

and likewise for the harmonic voltage (2)

V (t) = V0 × cos(ωt+ φv) = Re
[

V̂ × e−iωt
]

. (6)

Moreover, for linear circuits comprised of resistors, capacitors, and inductors, the complex

current amplitude and the complex voltage amplitude are proportional to each other,

V̂ = Z × Î (7)

where Z is the complex impedance of the circuit in question. In a moment, we shall learn

how to calculate the impedances of various circuits.
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But first, a point of notations: Somehow, the Physicists and the Electric Engineers ended

up with different conventions for the complex amplitudes of harmonic quantities. In Physics

convention, the imaginary unit
√
−1 is denoted i, and the harmonic time dependence is

written as exp(−iωt), hence

I(t) = Re
(

Î × e−iωt
)

, V (t) = Re
(

V̂ × e−iωt
)

. (8)

Moreover, when focusing on linear quantities such as voltages, currents, or EM fields, the

Physicists often make the Re operation — taking the real part of a complex number —

implicit, thus writing

I(t) = Î × e−iωt, V (t) = V̂ × e−iωt. (9)

However, all such formulae should be understood as the LHS is the real part of the complex

RHS rather than as simple identity between the two sides of an equation. In other words,

eqs. (9) should be understood as short-hand notation for eqs. (8).

In the Electric Engineering convention, the imaginary unit
√
−1 is denoted j rather than

i because i is often used for a current. Also, the harmonic time dependence is written as

exp(+jωt), hence

I(t) = Re
(

Î × e+jωt
)

and V (t) = Re
(

V̂ × e+jωt
)

(10)

for

Î = I0 × e+jφi and V̂ = V0 × e+jφv . (11)

Fortunately, we may reconcile the two conventions by identifying

j = −i. (12)
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Calculating Impedances

Let’s learn how to calculate the impedances of various circuits and circuit elements.

1. For an Ohmic resistor of resistance R, the impedance is real

Z = R. (13)

Indeed, for the resistor V (t) = R× I(t) at all times t, thus the same phase φv = φi for

the harmonic current and harmonic voltage while the amplitudes related as V0 = R×I0,

hence V̂ = R× Î and therefore Z = R.

2. For an ideal inductor of self-inductance L, the impedance is purely imaginary

Z = jωL. (14)

To see this, note that a time-dependent current through an inductor leads to EMF

E(t) = −L× dI

dt
. (15)

The voltage across an ideal inductor is minus the EMF (since they are counted in

opposite directions), thus

V (t) = +L× dI

dt
, (16)

which for a harmonic current I(t) = Re
(

Î × ejωt
)

becomes

V (t) = L× d

dt
Re
(

Î × ejωt
)

= Re

(

L× Î × d

dt
ejωt

)

= Re
(

L× Î × jωejωt
)

= Re
(

V̂ × ejωt
)

for V̂ = L× Î × jω.

(17)

In other words, for a harmonic current of complex amplitude Î we have a harmonic

voltage of complex amplitude

V̂ = jωL× Î = Z × Î for Z = jωL. (18)

Note that the inductor’s impedance increases with the frequency ω.
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3. For a capacitor of capacitance C, the impedance is also purely imaginary, albeit of

the opposite sign from the inductor’s impedance:

Z =
1.

jωC
=

−j

ωC
. (19)

To see this, note that a voltage V across a capacitor comes with stored charge Q =

C × V , and if the voltage and hence the charge are time dependent, then there is a

current through the capacitor — or rather, through the wires connected to the capacitor

—

I(t) =
dQ

dt
= C × dV

dt
. (20)

For a harmonic voltage V (t) = Re
(

V̂ × ejωt
)

, the current becomes

I(t) = C × d

dt
Re
(

V̂ × ejωt
)

= Re

(

C × V̂ × d

dt
ejωt

)

= Re
(

C × V̂ × jωejωt
)

= Re
(

Î × ejωt
)

for Î = C × V̂ × jω.

(21)

In other words, for a harmonic voltage of complex amplitude V̂ we have a harmonic

current of complex amplitude

Î = jωC × V̂ =
V̂

Z
for Z =

1

jωC
. (22)

Note: unlike the inductor’s, the capacitor’s impedance decreases with frequency ω.

4. For a serial circuit of several elements or sub-circuits, the net impedance is the sum

of sub-circuits’ impedances,

Z1 Z2 Zn

Znet = Z1 + Z2 + · · · + Zn . (23)
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Indeed, in a serial circuit the same current I(t) flows through all the element or sub-

circuits, while their voltages add up,

Vnet(t) = V1(t) + V2(t) + · · · + Vn(t). (24)

For harmonic voltages, their complex amplitudes add up as complex numbers:

Vnet(t) =
n
∑

k=1

Re
(

V̂k × ejωt
)

= Re

((

n
∑

k=1

V̂k

)

× ejωt

)

= Re
(

V̂net × ejωt
)

for V̂net =
n
∑

k=1

V̂k ,

(25)

hence in terms of the common current amplitude Î and the impedances Zk,

V̂net =

n
∑

k=1

Zk × Î =

(

n
∑

k=1

Zk

)

× Î (26)

and therefore

Znet =
n
∑

k=1

Zk . (27)

5. For a parallel circuit of several elements or sub-circuits, the inverse net impedance

is the sum of sub-circuits’ inverse impedances,Z1

Z2

Zn

1

Znet
=

1

Z1
+

1

Z2
+ · · · +

1

Zn
. (28)

Indeed, this time we have the same voltage across every sub-circuit while their respec-

tive currents add up,

Inet =
∑

k

Ik(t) . (29)

Consequently, for harmonic currents through each sub-circuit, the current amplitudes
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add up as complex numbers,

Înet =
∑

k

Îk , (30)

or in terms of the common voltage amplitude V̂ and the individual circuit impedances

Zk,

Înet =
∑

k

V̂

Zk
= V̂ ×

∑

k

1

Zk
, (31)

hence

Înet =
V̂

Znet
for

1

Znet
=
∑

k

1

Zk
. (32)

Example: LC circuit

Consider a parallel circuit made from an inductor L and a capacitor C,

For simplicity, consider an ideal inductor (without any Ohmic resistance) and an ideal capac-

itor; a more realistic circuit will be the subject of a homework problem. Thus, the capacitor

has impedance ZC = 1/jωC, the inductor has impedance ZL = jωL, and the whole parallel

circuit has

1

ZLC
=

1

ZL
+

1

ZC
=

1

jωL
+ jωC

=
1− ω2LC

jωL
=

(1/LC)− ω2

(1/LC)
× 1

jωL

=
ω2
0 − ω2

ω2
0

× 1

jωL
(33)

where
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ω0 =
1√
LC

(34)

is the resonant frequency of the LC circuit, hence

ZLC = jωL× ω2
0

ω2
0 − ω2

. (35)

Note infinite impedance at the resonant frequency, Z = ∞ for ω = ω0.

For a real LC circuit where the inductor also has some small Ohmic resistance R, the

impedance at the resonant frequency is finite but very large, and the resonance happens for

a narrow but finite range of frequencies around the ω0:

ω

|Z|

ω0

In the days of discrete electronics, the LC circuits were often used as loads of radio-frequency

amplifiers, for example
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Here the input voltage governs the current through the transistor and the LC load, so

the output voltage is proportional to the load impedance at the signal’s frequency. This

gives a strong amplification of the signal at near-resonant frequencies, but suppresses other

frequencies. Also, by tuning the capacitance C, one may tone the resonant frequency ω0 =

1/
√
LC and hence select the desired signal from the incoming mess.

Power and other quadratic quantities

As long as we stick to linear relations between various currents and voltages, and/or

electric and magnetic fields, we may use complex numbers for harmonic variables such as

I(t) = Îe−iωt, etc., and eventually takes the real parts of all such variables at the very end

of the calculation. This approach does not work for the non-linear quantities; nevertheless,

we may use the complex amplitudes to calculate the quadratic or bilinear quantities such as

power or energy density.

Let’s start with the ordinary electric power. Suppose a harmonic current flows through

some circuit and there is a harmonic voltage across it,

I(t) = I0 × cos(ωt+ φi), V (t) = V0 × cos(ωt+ φv). (36)
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Then the instantaneous power consumed by that circuit is

P (t) = I(t)× V (t) = I0V0 × cos(ωt+ φi) cos(ωt+ φv)

= I0V0 ×
(

1
2 cos(φi − φv) + 1

2 cos(2ωt+ φi + φv)
)

.
(37)

Time-averaging this power over an oscillation period (or even over a half a period), we get

〈cos(2ωt+ φi + φv)〉 = 0 (38)

(where 〈· · ·〉 denotes time-averaging), hence

〈P 〉 = I0V0 × 1
2 cos(φi − φv). (39)

In terms of the complex amplitudes Î = I0e
−iφi and V̂ = V0e

−iφv , we have

Re
(

Î∗ × V̂ ∗
)

= IiV0 × Re
(

e+iφi × e−iφv

)

= I0V0 × cos(φi − φv), (40)

and likewise

Re
(

Î × V̂ ∗
)

= I0V0 × cos(φi − φv). (41)

Consequently, eq. (39) for the time-averaged electric power becomes

〈P 〉 = 1
2 Re

(

Î∗ × V̂
)

= 1
2 Re

(

Î × V̂ ∗
)

. (42)

Similarly, for a harmonic electromagnetic wave

E(r, t) = Re
(

Ê(r)e−iωt
)

,

H(r, t) = Re
(

Ĥ(r)e−iωt
)

,
(43)

the time-averaged power flow density — i.e., the time-averaged Poynting vector — is

〈S〉 = 1
2 Re

(

Ê∗ × Ĥ
)

= 1
2 Re

(

Ê× Ĥ∗
)

, (44)
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the time-averaged energy density is

〈u〉 =
ǫǫ0
4

∣

∣

∣
Ê

∣

∣

∣

2
+

µµ0
4

∣

∣

∣
Ĥ

∣

∣

∣

2
, (45)

and the time-averaged stress-tensor is

〈

T ij
〉

=
ǫǫ0
2

Re
(

E∗iEj
)

+
µµ0
2

Re
(

H∗iHj
)

− 〈u〉 × δij . (46)

We shall explore these formulae in a later class, once we get familiar with the electromagnetic

waves.

Meanwhile, let’s go back to the electric power (42). The current and the voltage ampli-

tudes are related to each other as V̂ = Î×Z where Z is the circuit’s impedance. Consequently,

Re
(

Î∗ × V̂
)

= Re
(

Î∗ × Î × Z
)

=
∣

∣

∣
Î
∣

∣

∣

2
× Re(Z) (47)

and hence

〈P 〉 = 1
2

∣

∣

∣
Î
∣

∣

∣

2
× Re(Z). (48)

At the same time,

Re
(

V̂ ∗ × Î
)

= Re

(

V̂ ∗ × V̂

Z

)

=
∣

∣

∣
V̂ |
∣

∣

∣

2
× Re

1

Z
(49)

and hence

〈P 〉 = 1
2

∣

∣

∣
V̂
∣

∣

∣

2
× Re

1

Z
. (50)

But please note that for a complex impedance Z,

Re
1

Z
6= 1

Re(Z)
. (51)

Instead,

Re
1

Z
=

Re(Z)

|Z|2 =
Re(Z)

Re2(Z) + Im2(Z)
≤ 1

Re(Z)
, (52)

unless Z happens to be real.
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Finally, a comment about electric power in Electric Engineering notations. In Engineer-

ing, one usually specifies the strength of an AC voltage or current not by their amplitudes

but by its RMS (root-mean-square) values

Vrms =
√

〈V 2〉 and Irms =
√

〈I2〉. (53)

For harmonic voltages and currents,

〈

cos2(ωt+ φ)
〉

= 1
2 , (54)

hence

Vrms =
√

1
2 × V0 , Irms =

√

1
2 × I0 . (55)

For example, the AC voltage in American houses is 120 V (although it’s often called 110 V

because it used to be 110 V many years ago), meaning Vrms = 120 V; the amplitude of this

voltage is V0 =
√
2× 120 V ≈ 170 V.

In terms of the RMS voltage and current, the (time-averaged) electric power is

〈P 〉 = Irms × Vrms × cos(∆φ) without the factor 1
2 . (56)

The ∆φ = φi−φv in this formula is the phase difference between the voltage and the current.

Note: if you pay a big electric bill, you should try to minimize this phase difference and keep

cos(∆Φ) as close to 1 as you can. The reason for this is that the electric utility charges you

not for the Watt-hours

W =

∫

P dt =

∫

VrmsIrms cos(∆φ) dt (57)

you actually get to use but for the Volt-Ampere-hours

W =

∫

VrmsIrms dt (58)

they have to deliver, so if the electric equipment you use has cos(∆φ) < 1, you are paying

for more electric power than you get to use!
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