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The most general dynamical law for & quantum mechanical system with a finite number of levels is
formulated. A fundamental role is played by the so-called “dynamical matrix” whose properties are stated
in a sequence of theorems. A necessary and sufficient criterion for distinguishing dynamical matrices corre-
sponding to a TTamiltonian time-dependence is formulated. The non-Hamiltonian case is discussed in detail
and the application to paramagnetic relaxation is outlined.

I. INTRODUCTION

7§ HE dynamical description of a mechanical system

consists of three distinet aspects, namely (i) the
choice of dynamical variables; (i) the rule for assigning
numerical values to the various functionals of the dy-
namical variables appropriate to the specification of the
“state” of the system; and, finally (iii) the time
dependence of this rule for assigning numerical values
(equations of motion). The distinction between classical
and quantum-mechanical systems is solely contained, in
the second aspect; and it is well known that “related”
classical and quantum-mechanical systems (i.e., those
dealing with the same dynamical variables) have
formally identical equations of motion.

In quantum mechanies it is conventional! to introduce
the Schridinger amplitude as a specification of the
state; and the time-dependence of the state is expressed
in terms of a time-dependent unitary transformation

V()= U (L1 (to), (1)

where ¢ (/) is the Schridinger amplitude and

Ut i0) = (exp{ i j: iy }) )

+

is the time-ordered exponential of the time integral of
the (Hermitian) Hamiltonian operator H(¢). (In the
particular case of a constant Hamiltonian one may omit
the time-ordering symbol, but this simplification is
irrelevant to the present discussion.) The time depend-
ence is here carried entirely by the “state” and is
completely equivalent to the differential equations of
motion in the “Schriodinger picture”:

Lo (1)) )= H (W (). ©)
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' See, for example, P. A, M. Dirac, The Principles of Quantum
Mechanics (Clarendon Press, Oxford, 1938), 4th ed,

An alternative form of the equations of motion is
obtained by going to the “Heisenberg picture” in which
the time dependence is carried entirely by the dynamical
variables, the “state” being the same for all times:

0()=U"(1,L)0 (L) U (L,L). 4)

In either picture, the rule for assigning numerical values
to the dynamical variable 0 is given by

0 —yloy=(y|oly). ()

While the dynamics is thus formulated in terms of the
Schrédinger amplitude ¥, it is known that the general
specification of the “state” of a quantum-mechanical
system is somewhat more general® than is implied by
Eq. (5); it corresponds to the choice of a Hermitian
positive semidefinite matrix of unit trace and a rule for
assigning numerical values to dynamical variables in
the form:

O— Tr{0p}. (6)

Since p is Hermitian, it can always be diagonalized in
the form

p:Zr)\r‘l’r\p:zZr)\rl‘l/rx‘!’r’ 3 Zr)\r:: 1’ (7)

where the non-negative numbers X, are the eigenvalues
of the matrix p and ¢, are the corresponding cigen-
vectors; hence one may rewrite the rule embodied in
Eq. (6) in the form:

00— 2 MY 0¥, )

so that it is a weighted average of the values obtained by
the rule Eq. (5) with the weight A,. In this manner one
is led to consider the matrix as representing a suitable
“ensemble” of kinematically identical systems and is
called the “density matrix.” But we prefer to ignore this
“interpretation” and use the “state” of a single mechani-
cal system to be completely specified by giving the

*J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1955).
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appropriate density matrix p. The “states” of a
quantum-mechanical system (taken in this generalized
sense) thus form @ convex set of matrices and incoherent
mixing of two states is simply given by a normalized
lincar combination. To a special class of density
matrices correspond Schrodinger amplitudes, namely to
those with all A, zero except one which is unity ; for this
special case the matrix p satisfies the equation

p=p. 9

(A coherent superposition of such states would again
correspond to a matrix of the same type, but this
matrix is not simply the normalized linear combination
of the matrices.)

A natural assignment of the time dependence of these
states is obtained from the decomposition according to
Eq. (7) requiring the constants A, to be time inde-
pendent but ¢, to change with time in the manner given
by Eq. (3). This Schrédinger picture equations are
summarized by the law

p()=U 1) p (1)U (1) (10)
Completely equivalent to these are the Tleisenberg
picture equations in which the state is time independent

but the dynamical variables change according to
Eq. (4). In ecither case the matrix U (t,lo) is unitary and

the time dependence is completely described by this

unitary matrix or, equivalently, by the Hermitian
Hamiltonian matrix H (7).

However it is quite obvious that this dynamical law,
though natural, is not the most general nor fully
adequate; thus in treating problems of irreversibility
and relaxation one has to deal with temporal changes of
the density matrix which are not unitary and cannot
thus be encompassed within a Hamiltonian scheme. The
problem thus arises of developing a more general
dynamical framework to deal with the time dependence
of a general quantum-mechanical system, including the
Hamiltonian scheme as a special case. It is to the formu-
lation and solution of this problem that this paper is
devoted.

The underlying ideas of this investigation are appli-
cable to dynamical systems in general, both classical
and quantum mechanical. However for reasons of
simplicity of treatment and the immediate applicability
to paramagnetic relaxation phenomena we have found
it convenient to confine our attention to quantum-
mechanical systems with a finite number of states. All
the operators one has to deal with thus become finite-
dimensional matrices. The theory so developed has
points of similarity with the theory of Markov chains,
but there are essential points of difference since the
n-level system in quantum mechanics is described in
terms of an 7> matrix rather than by a probability
vector with # elements.

This paper, then, deals with stochastic processes in
quantum-mechanical systems with o finite number of

states, i.e., one which is associated with dynamical
variables and states specified by finite-dimensional
matrices. In See. 2 we deal with the general formulation
of the problem; and Sec. 3 with the development of a
necessary and suflicient condition for a dynamical Taw to
be a Hamiltonian scheme. In Sec. 4 several auxiliary
theorems are stated and proved and a canonical form of
the “dynamical matrix” is presented. Several special
cases of the dynamical matrices are enumerated in
Sec. 5 and the case of paramagnetic relaxation in a
strong magnetic field is studied. The final section
includes a discussion of the relevance of this theory to
questions of irreversibility in more complicated dy-
namical systems.

I, FORMULATION OF STOCHASTIC DYNAMICS

The kinematic restrictions on the density matrix p
of an n-level system are the following®:

(pr.)*=ps.r, (Hermiticity) (11)

w*pe ., 20, (positive semidefiniteness)  (12)

(normalization) (13)

In the above we have invoked the summation conven-
tion, the indices running over the values

rys=1,2) e

The most gencral dypamical law rclates a density
matrix p(fs) with another density matrix p(f) in a
manner which depends on the two times £ and fo. 1f we
recuire that the incoherent superpositions of two states
oW {ly) and p® (ly) should correspond to the incoherent
superpositions of p® (1) and p™ () with the seme nor-
malized weights the most general dynamical law is
given by the linear, homogeneous mapping:

Pr,ﬂ(’(!) - Pr,a(l’) = 7o, 7’8’ ({g/(\>ﬂr’s’ (/O), (11)

where Ay o (1) 15 a numerical 22X xn® matrix labelled
by pairs of indices (rs) and (#'s") depending on the times
tand to but independent of the matrix p(fy). Since the
linearity is demanded only for noermalized incoherent
superpositions,

ple)=2p® (t)+ (1—2)p® (to) (15)

(with 0<a<1), it might appear that the general
mapping is an inhomogeneous one of the form

pr.s(te) — Pr,s(l)Zfl rs,,-'s"U,io)pr’s’(fo)+a,s(t,lo), (106)

with a,,(4{y) independent of p, ({fp). But one verifies
immediately that (16) can be rewritten in the form (14)
with

Ara,r’a':/1rs_r’s’/+a'r,36r’a’ (17,)

making use of (13).
Let us now discuss the restrictions imposed on the
matrix A, . The consequences of (11), (12), (13) are,
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respectively,

Asr,s'r’:: (/1 rs,r’s’)*, <11/>
fom| r:;,r’s’:\’r’yar’}k }/ 0, (12’:)
A rr,r’g T 57"8’ (13/)

which give fairly complicated properties for the
matrix. o display these properties in a more trans-
parent fashion, as well as for further development, it is
advantageous to introduce another 72X#? matrix B
related to 4 and defined by

(14)

Lt immediately follows that B is Hermitian and positive
semidefinite; we can rewrite (117) and (12) in the form:

Brrt sy == (Bag vrr)¥, (15)
Srr'*lgrr‘.w'zsa'z(k (16)

The trace condition (13') is still complicated and
becomes
(17)

by summing with respect to the other indices also, we
obtain the weaker statement

Brr’,xa’:: A 8,8’

(Hermiticity)

(positive semidefinitencss)

Hrr'mx' = 5r’s’ 5

]3”' R it ar'r’ =1L,

(18)

Let us now consider the effect of a time-dependent
change of basis on the matrix B. Under a change of
basis generated by the unitary matrix a(t) at the final
time, p(f) is unaffected but p(f) changes according to

o) = a(Dp(Da’ (1), (19)
or, equivalently,
pr.a() =y () (e, ) 0.0 (0).

Hence the transformation of the matrix B under the
change of basis is given by

Brr".ser’aalﬁ) - “T.p(l,‘) (“sux([»*‘[})pr’yqs’ (l,i(ﬁ,
which may be written in the form

B~ 8B, (20)
where

6r1" R == (fmar’s’ (20’)
15 a unitary matrix. Thus B undergoes o unitary trans-
formation under a change of basis. In the particular case
of a unitary time development according to (10), we
can, by a suitable time-dependent change of basis make
the density matrix time  independent {Helsenberg
picture) so that the B matrix assumes the simple form

21

Ty — o
IJrr’,sa"“ Orp/Ogsts

We thus see that the matrix B incorporates the
kinematical restrictions on the dynamical law in a
succinct fashion; we shall call B the “dynamical
matrix.” The results of this section can be summarized
in the form of the following theorem :
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Theorem 1. The dynamical mateix is o positive semi-
definite #°X#* matrix with trace » and obeying the
stronger partial trace relation given by (17). The
dynamical matrices for different time-dependent choices
of basis are unitarily related.

III. HAMILTONIAN DYNAMICAL MATRICES

Let us consider the unitary case in detail. From the
special form (17) it follows that

(])’Q>rr',m’ =N Brr’,m“

In view of the unitary equivalence (20) of the B
matrices for arbitrary choice of basis this relation is
general ; one thus has the characteristic equation for the
dynamical matrix for unitary time dependence,

B—nB=0. (22)

Hence the eigenvalues of 3 are # or 0 and, in view of the
trace condition (18), the eigenvalue » is nondegenerate.
The characteristic equation (22) could also be obtained
from the general form,

.Brr’.sa’ = Urr’ (1]”1)*, (23)

for the dynamical matrix in the case of a unitary time
dependence governed by the unitary matrix (10). Of
course, by a proper choice of basis the dynamical
matrix in this case can be brought to the standard
form (21).

It is interesting to show that the converse also holds;
more precisely, if B is a dynamical matrix satisfying the
conditions stated in Theorem 1 as well as the charac-
teristic equation (22) it corresponds to a unitary time
dependence (10) if the density matrix and the dynamical
matrix can be reduced to the form (23). To demonstrate
this result we proceed as follows: let D be the matrix
which diagonalizes B; since B is Hermitian, 1) can be
chosen unitary® so that

1)77*’,61’ (-[)ss’,tt’>*: 677’535“ (24)

By a proper choice of D it is possible to bring B to a
diagonal form B with the eigenvalue # in the first place
and zeroes elsewhere. But by definition

B=DIAD,

30 that

B?‘r’,ss’:ﬁ(])ll,rr’)*])ll,ss’- (25)

We now invoke the trace condition (17) in the form

71([-)11,73")*])]1,73’:67'/3'; (26)
so that the # X% matrix
VVM’: (WL)%(])Jl,rw")* (27>

is unitary; the demonstration is complete if we notice

8 See, for example, I . Murnaghan, 7/e Theory of Group
Representations (The Johns Hopkins Press, Baltimore, Maryland,
1938).
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that (25) can be rewritten in the form
Brr’,ss' = I/rfr' (V""yk)

which is to be compared with (23). We have thus proved
the following theorem:

Theorem 2. The necessary and sufficient condition {or
a dynamical matrix (satisfying the conditions of
Theorem 1) to represent a Hamiltonian dynamics is that
the dynamical matrix should satisfy the characteristic
equation (22).

IV. NON-HAMILTONIAN DYNAMICAL MATRICES

In the general case one has no Hamiltonian and
Eq. (22) would not be valid; in view of (16) the charac-
teristic equation should imply non-negative eigenvalues
and should be at most of degree #*. Comparing the
expression (23) for the dynamical matrix for unitary
time dependence, the question then naturally suggests
itself whether the general dynamical matrix is factor-
izable in the form

Brr’.m’:: ‘Yrr’(yﬂ’)*: (28)

with XV in general. If this were true, from the
Hermiticity of B it follows that

(J(rr') (},n'>*:—‘ (Arsa’>*(}frr’),
so that
X—rr'/},rr’:; {X“,/}"",>*: 1/63

where ¢ is a real constant independent of r, ¥/, s, s’ so
that we have
V= Cer'-

Substituting this expression into (28) and invoking the
trace condition (17) it follows that

CXT” (*X'Ni')*3 5:"1’,

so that (¢)!X is a unitary matrix and we recover the
unitary scheme (23). Thus we have the following
theorem :

Theorem 3. Except in the case of unitary time de-
pendence of the density matrix, the dynamical matrix
cannot be factorized in the form (28).

We shall now present a canonical form for dynamical
matrices in the general case using a generalization of the
techniques employed in Sec. 3. Let us again consider the
diagonalizing unitary 7#2X#»? matrix D; in the general
case consider the nXn matrices W{g,¢") defined by

W (99" ) =D g (29)

Let u(gq") be the »* non-negative eigenvalues (not
necessarily distinct) of the dynamical matrix B which
satisly the trace condition:

2. ulqq") =n. (30)

qq’

The unitarity restriction (24) on D may be rewritten in

terms of the matrices in the forms
2 LVN" (qq’) (]"Vss' ((](]!))* = 577"(3.“"’
Tr{Wt (qq/) ] V(PP,)} =00 pg'.

The definition of the diagonalizing matrix D can now
be rewritten in terms of the matrices W(gqg') to furnish
a canonical form for the dynamical matrix:

Byt ser= Z, w(qq YW om ((1‘1,) (W (51(1'))*- (32)

4,4

&2))

The strong trace relation (17) ensures that the relation
2 1(gg i(qg )W st (g =81, (33)

will be valid. These results are stated in the following
theorem:

Theorem 4. A general dynamical matrix can be written
in the canonical form (32) in terms of #2 matrices IV (99"
which obey the bilinear relations (31) and (33).

Note that the matrices W(gq') are not necessarily
unitary, but satisfy only the weaker condition (33). In
the special case of a single nondegenerate nonzero eigen-
value for the dynamical matrix (33) reduces to the dem-
onstration in Sec. 3 that 23V (11) is unitary. \We shall
see below that IV matrices not proportional to unitary
matrices have to be used for physically interesting
relaxating systems.

Since density matrices form a homogencous convex
set one verifies that if

Prs (hl) - PN(“ (t) = Brr’,ss’(i) /,lo)pr'a' (fﬂ)

form a set of admissible dynamical laws, the mapping
associated with the dynamical matrix,

Brr',n”:Z: ?\il';rr’,w’(i)) }:, ‘}\a':«‘: 1, )\,;()

is also admissible. We have thus the theorem :
Theorem 5. Dynamical matrices form a homogeneous
convex set.

V. SPECIAL DYNAMICAL MATRICES

We may now cnumerate several special cases of
dynamical matrices, exploiting in particular Theorem 5.
Two simple sets of dynamical matrices arc the following :

(i) Normalized linear combinations of “pure” mat-
rices of the type (23) with different U matrices. This set
may be identified with the representative of an ensemble
in the sense that the dynamical law corresponds to an
incoherent “mixture of dynamics”  with  different
Hamiltonians.

(i) “Relaxation gencrators” of the form:

BTT',J&'$0.7857'3’7 (34)

where o, is any admissible density matrix; this corre-
sponds to the mapping of every density matrix into the
density matrix oy, Note that 3 obeys the same charac-
teristic equation as o. While this mapping is itself un-
physical, the convex set formed out of this set with the
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last set corresponds to o standard relusation phe-
nomenon. Thus, for example, the matrix

Brr’ KT (1"" x)‘arr'ésa"‘}'}\o—mér’s’ (35>

for 0<A<C1 corresponds to a pure relaxation process
with associated characteristic time ((=£)/\.

The relaxation considered here is a very simple kind
of relaxation namely, one which is governed by a simple
relaxation time and this may be seen to be an immediate
consequence of the fact that the factor 8, yields unity
when applied to any density matrix, Tl we construct the
more general “relaxation generators”

brr’,s&’:GrsTr's’y (36)
or the more general form
brr',ss':z:c: 0rg @7y (@) (36,>

(where 7 is an admissible density matrix), they may be
used to describe more complex relaxation processes in
terms of dynamical matrices formed in the manner
of (36).

'To make these statements more specific, let us con-
sider the special case of paramagnetic relaxation in a
strong external magnetic field*; and to simplify matters
let us neglect all multipole polarizations except the
magnetic dipole moment. Let us choose a basis which
“transforms away” the unitary time dependence. We
are then left with a dipole polarization which undergoes
pure relaxation, the transverse and longitudinal parts
relaxing at different rates. Let us choose the z axis to be
in the direction of the external magnetic field. Consider
the dynamical matrix

]5yy',”f == (1 ‘“A)Srr’asls”{“kgr‘sar’s’

1 1
_}“,u (Ura“"gra) (dr’s"’"—ar’s'); (37>
7 7t

where A (0<A<1) and p are suitable parameters ; we can
easily verify that this'matrix is an admissible dynamical
matrix and describes relaxation of an arbitrary density
matrix towards o. The ratio of longitudinal and trans-
verse relaxation times is given by

1
T"’“’Z/T"’f:)\/[7\%;&('1‘1‘(02)——'—‘) } (38)
7
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The method of construction can be generalized to ac-
commodate arbitrary multipole polarizations.

One verifies that this class of dynamical matrices have
the canonical form (32), but they cannot be obtained
as the weighted average of “pure” matrices of the type,
since all such matrices map the matrix

Pris’ (iil> = (1/%)6,/3:

into itself and are thus unable to accommodate relaxa-
tion towards the steady state o. In conclusion we may
also point out that in the case of paramagnetic relaxa-
tion the relaxation mechanism has the same symmetry
as the external polarizing field and hence the relaxation
generators are invariant under the change of basis
implicit in the “transforming away” of the unitary
time dependence.
VI. DISCUSSION

In the previous sections we have discussed what may
be called “forms of stochastic dynamics” in quantum-
mechanical systems. While the discussion was confined
to systems associated with 12X n matrices the notions of
mapping of density matrices, convex sets and canonical
forms are relevant to the general case. With the more
general notion of a state as a “rule for assigning numeri-
cal values to dynamical variables” is naturally asso-
ciated a more general dynamical framework and the
non-Hamiltonian nature of this more general framework
is the major outcome of this investigation. Such non-
Hamiltonian dynamical frameworks are known in
classical field theory, but they are rarely treated from
the present point of view. T'o mention two familiar
instances (generally handled by entirely different and
special methods), we may mention the decay of turbu-
lence® in hydrodynamics and the passage of partially
coherent partially polarized light through a medium.®
A systematic study of these topics from the present
point of view will be discussed elsewhere.
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