Dielectric Polarization, Bound Charges,
and the Electric Displacement Field

Any kind of matter is full of positive and negative electric charges. In a dielectric, these
charges are bound — they cannot move separately from each other through any macroscopic
distance, — so when an electric field is applied there is no net electric current. However, the
field does push the positive charges just a tiny bit in the direction of E while the negative
charges are pushed in the opposite directions. Consequently, the atoms and the molecules

comprising the dielectric acquire tiny electric dipole moments in the direction of E.



To see the the net effect of all these dipole moments on the macroscopic scale, imagine
smearing all the positive bound charges into a large uniform charge density +p and likewise
all the negative bound charges into uniform charge density —p. Without the electric field,
these densities overlap each other over the whole dielectric, so the net charge density cancels
out. But when we turn on the field, the positive density moves a tiny bit in the direction of
E while the negative density moves in the opposite direction:
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As the result of this move, the bulk of the dielectric — where the positive and negative
charges continue to overlap each other — remains electrically neutral. But in a thin surface
layer on the left side of the dielectric there are only negative charges while in a similar layer
on the right side there are only positive charges. Altogether, the dielectric’s surfaces acquire

non-zero net densities o, of bound charges as shown on the picture below:
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Now let’s turn from pictures to math and calculate the net surface density of the bound

charges in terms of the polarization

net dipole moment

P = (1)

volume

In general, the polarization is not uniform but varies on the macroscopic scale, maybe because
the dielectric is non-uniform, maybe because it’s subject to a non-uniform electric field,
maybe both. In any case, mathematically the non-uniform P(r) acts as a macroscopic field.
So let’s calculate the electric potential V' (r) due to a general polarization field, and then

re-interpret the result in terms of the net density of bound charges.

Let’s start with the potential of a single ideal dipole,

Vi) = e 2 = eV (1), @)
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where the second equality is just the mathematical identity, V(—1/r) = ©/r2. More generally,

for a dipole p located at some point ry, the potential is
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where the the subscript of V, indicates that the gradient is taken with respect to the 3
coordinates of the r vector rather than of the rq.

Eq. (3) easily generalizes to the potential of several dipole moments, and hence to the

potential of a continuous density of the dipole moment, thus

Vi) = —47360 /// d*Vol P(r’)~Vrﬁ. (4)

dielectric

Note that the gradient here is taken with respect to the r vector — the point where we mea-

sure the potential — rather than the with respect to the integration variable v’ = (2/, ¢/, 2/).



However, since 1/|r — r/| depends only on the difference between the two position vectors,

we may trade the gradient WRT r for the (minus) gradient WRT r’ using

1 1
p—— = —Vp——r, 5
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thus
1
V() = d3Vol P(r 6
(r) +47T€0 /// © \r—r’\ (6)
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At this point, the gradient acts on the integration variable, so we may integrate by parts

using

P() Vo = V(P “l)) - (V-P() — 7)

v — 1’|

and the Gauss theorem:

V(r) = 47T60 /// d*Vol Vy (| Er)/|> N 47r60 /// Vel (V- P(r') Ir—r’l
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Note that both terms on the bottom line here look like Coulomb potentials of continuous

charges. Specifically, the second term looks like the Coulomb potential of the volume charge

density
p(r') = =V P(r), (9)

while the first term looks like the Coulomb potential of the surface charge density
op(r') = P(r')-n (10)
where n is the unit vector normal to the dielectric’s surface at the point r’, hence

P-d?A = (P-n)d?’A = o,d*A. (11)



Indeed, in terms of the py(r) and op(r), eq. (8) becomes

Vi) - // ") d*A /// r’) d*Vol
B 47reo|r—r’| 47Teo|r—r’|

dielectric dielectric
surface volume

= V(r)[surface charge op(r')] + V(r)[volume charge py(r’)].

(12)

Physically, we identify the o, = P - n as the net surface density of the bound charges and the

pp = —V - P as the net volume density of the bound charges. Note: for general non-uniform

polarizations P(r), the positive and the negative bound charge densities may mis-cancel

not only on the surface of a dielectric but also inside its volume. However, for the uniform

polarization there are no net volume bound charges but only the surface bound charges.

Consider a few examples:

e Dielectric cylinder, uniform P parallel to the axis:
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e Dielectric sphere, uniform P in z direction:

op(0,¢) = Pcosb,

Uleft cap _ _p

(14)



e Dielectric cylinder, non-uniform polarization P = P§ (constant magnitude in radial

direction):

O_Zldewall S P,

o_gndcaps =0,
pbulk _ B (15)
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Q= 0.

In fact, for any dielectric geometry and any polarization field, uniform or not, the net

bound charge is zero since the bound charges cannot in or out of the dielectric. Indeed,

Qpet = // opd2A + ///pbd3V01

dielectric dielectric

surface volume
= // (P-n)d*A — ///(V-P)d3\/ol
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g i (16)
= // P-d2A — ///(V-P)d3Vol

dielectric dielectric

surface volume

= 0 by Gauss theorem.

Gauss Law and the Electric Displacement Field

Besides the bound charges due to polarization, a dielectric material may also contain
some extra charges which just happen to be there. For a lack of a better term, such extra
charges are called free charges, just to contrast them from the bound charged due to polar-

ization. Anyway, the net macroscopic electric field does not care for the origin of the electric



charges or how we call them but only for the net electric charge of whatever origin,

pnet<r) = pfree<r) + pbound<r)7 Unet<r) = Ufree(r> + Ubound(r)a etc. (17)

In particular, the Gauss Law in differential form says

eV -E(r) = pnet(r) + omnetd(coordinate L surface) (18)
18

+ more J-function terms due to linear and point charges.

For simplicity, let’s ignore for a moment the surface, line, and point charges and focus on

just the volume charge density. This gives us

eV -E = Pnet = Pfree T Pbound = Pfree — V-P, (19)
which we may rewrite as
V- (GOE + P) = Pfree - (20)

In light of this formula, the combination

D(r) = ¢E{r) + P(r) (21)

called the electric displacement field obeys the Gauss Law involving only the free charges

but not the bound charges,

V D) = phee. (22)

* A point of terminology: in contrast to “the electric displacement field” D, the E is
called “the electric tension field”. But usually, E is simply called “the electric field”
while D is called “the displacement field”.



Outside the dielectric there is no polarization, so we simply set D(r) = ¢gE(r). Conse-
quently, at the dielectric’s boundary, the D field has two sources of discontinuity: (1) the
abrupt disappearance of the P term, and (2) discontinuity of the E field due to the net
surface charge density. If we focus on the component of the D vector L to the boundary, we

get
diSC(DJ_) = — j_nsjde + €0 diSC(EJ_) = —P-n + 0net = —0phound + Onet = Ofree - (23)

Again, only the free surface charge affects this discontinuity, the bound surface charge cancels

out between the P and the ¢yE terms.

In terms of the D field’s divergence, the discontinuity (20) becomes
(V- D)gingutar = disc(D ) d(coordinate L surface) = 0pee 6(coordinate L surface). (24)

Similar -function terms would obtain at free surface charges stuck inside the dielectric or
outside it, and if we also allow for line or point free charges, there would also be §(2) and
63 on the RHS. Altogether, for a most general geometry of free charges the complete Gauss
Law for the D field becomes

V -D(r) = pree(r) + 0fee d(coordinate L surface) (25)
25
+ more J-function terms due to free linear and point charges,

but only the free charges appear on the RHS here. All contributions of the bound charges
cancel against the V - P term hiding inside the V - E on the LHS.

Therefore, the integral form of the Gauss Law for the D field is

/ D - d2A = Qpec[surrounded by S] (26)

complete
surface S

where the RHS includes all possible configurations of free charges surrounded by the surface
S, but only the free charges. By the way, the surface S in this formula can be any complete
surface — it can lie wholly completely the dielectric, or completely outside it, or even cross
the dielectric’s surface — but the Gauss Law will work in any case, as long as we properly

account for the net free charge inside S.



e Example: consider a solid dielectric ball or radius R with a free charge g stuck at its
center. We know polarization field P(r) = P(r)r is spherically symmetric, but we

don’t know its radial profile.

In this case, the combination of spherical symmetry and the Gauss Law (26) immedi-
ately gives us the displacement field D both inside and outside the dielectric. Indeed,
by spherical symmetry D(r) = D(r)t, hence for S being a sphere of any radius r

/D~d2A = D(r) x 42 (27)
S

However, the only free charge inside any such sphere is the point charge ¢ at the center,
thus
qr

— D) = ;. (28)

q
47rr?

D(r) =

both inside and outside the dielectric ball.

As to the electric tension field E, eq. (28) immediately tells us that outside the ball,

qr
E = = 29
(r) €0 Ameg 12 (29)

regardless of the polarization’s radial profile P(r). However, inside the dielectric ball

we may only tell that

E(r) = i( 7 _ P(r)) i, (30)

eo \4mr2

but we would need another equation relating the polarization to the electric field in

order to completely determine the E(r).

Warning: While in highly symmetric cases — like the above example — we may calculate

the D field just from the Gauss Law, more general geometries do not allow such shortcuts.
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Even the Coulomb-like integrals over the free charges like

7 pfree d3V01
o 2 o [t

do not work for general geometries of dielectrics and free charges. In fact, in general

D(r) # —V(anything) (32)

unlike E(r) = —VV/(r). Indeed, while the electrostatic tension field always obeys V x E = 0,

for the displacement field we have

VxD = ¢VXE + VxP = V xP, which does not need to vanish. (33)

This issue becomes particularly acute at the dielectric’s boundary. We know that despite
the surface charge density of the bound charges, the potential and the tangential components

of the electric tension field must be continuous across the boundary,

V(just outside) = V (just inside), (34)
Ell(just outside) = Ell(just inside). (35)
On the other hand, the polarization field P abruptly drops to zero at the boundary, so if

P just inside the dielectric is directed at some general angle to the surface, then both its

tangential and normal components suffer discontinuities,

outside P =0
Pll(just inside) # Pll(outside) = 0,
/ / / / / / / PL(just inside) # Pl(outside) = 0. (36)

inside P # 0

Combining eqs (35) and (36), we find that in general the tangential components of the dis-

placement field are discontinuous across the dielectric’s boundary,
Dl(just outside) # Dll(just inside). (37)

As to the normal components of the tension and the displacement fields, the E- is generally

discontinuous across the boundary due to surface bound charges, but as we saw in eq. (23),
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in the absence of free charges

D= (just outside) = D= (just inside). (38)

SUMMARY.

So here is the summary of equations governing the electrostatic tension and displacement

fields E(r) and D(r) in and around dielectric materials.

In the middle of a dielectric or outside it:

V-D = Pfree » <39)
VxE= 0. (40)
On the other hand,
V-E = (1/€y)pnet, which is often unknown, (41)
V x D = unknown. (42)

At the outer boundary of a dielectric, or at the boundary between two different dielectrics:
e V., El and D+ are continuous,
e but £+ and DI are discontinuous.

To complete this equation system, we need a relation between the E and the D fields
at the same point r, and that relation depends very much on the dielectric material in
question. For some material, such relation can be rather complicated, or even history-
dependent. Fortunately, for most common dielectrics the relation between the E and D
fields is linear (unless the fields become too strong). So in this class, we shall henceforth

focus on such linear dielectrics.
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Linear Dielectrics
In linear dielectrics, the polarization P is proportional to the macroscopic electric field
E,

P = xeE (43)
where y is the susceptibility of the particular dielectric material; the ¢y factor is included
in eq. (43) to make the susceptibility y dimensionless. For gases at standard conditions
x ~ (a few) x 107, for many common liquid and solid insulators y ~ (a few) to (few tens),

but some special ceramics (titanates, etc.) have x ~ a few thousands. For some anisotropic

crystals the susceptibility is different along different crystalline axes, hence

Pi=e Y xijEj, (44)

J=x,y,2

but for this class we shall assume isotropic susceptibility as in eq. (43).

In terms of the displacement field D, eq. (43) means
D = ¢E + xooE = (x+1)egE = eE (45)

where the coeflicient

e =x + 1 (46)

is called the dielectric constant or the relative permittivity of the dielectric in question.

e A point of terminology: the dimensionless factor ¢ = x + 1 is called the relative
permittivity while the overall D/FE ratio € X ¢ is called the absolute permittivity of
the dielectric medium. In this context, the ¢y factor of the MKSA unit system is called

the dielectric permaittivity of the vacuum or simply vacuum permittivity.

* A table of dielectric constants of many common materials can be found at

https://www.kabusa.com/Dilectric-Constants.pdl [note (mis)spelling!].
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Now consider a few free charges stuck inside a uniform linear dielectric. For uniform the

D/FE ratio eep = const, the Gauss Law

V.-D Pfree (47)
translates to
1
V-E= —Vv.D = e (48)
€€0 €€0
and hence
1 e—1

pnet(r) = ¢V-E = Epfree(r) =  Pbound — — Ptree - (49)

Thus, in the bulk of a uniform linear dielectric, the bound charge shadows the free charge,

so the net charge is simply (1/€¢) x the free charge.

For example, consider a point free charge () stuck inside a large piece of uniform dielectric.

As long as we are much closer to that charge than to the boundary, the electric field is simply

(1/€) of the usual Coulomb field of @,

Q r
E = —. 50
dmeeq r? (50)

Consequently, the Coulomb force between two point free charges inside a uniform dielectric
is simply (1/€) of the Coulomb force in the vacuum,
Q1Q2 T12

Fio = ) 51
12 4aree 7’%2 (51)

In particular, the force between two ions in water — which has € &~ 80 — is 80 times weaker

that the force between similar ions at similar distance in the vacuum.

But please note that the simple relations (49) between the free charge, the bound charge,
and the net charge works only in the bulk of the dielectric. Locally, the bound charge screens
part of the free charge, but globally the bound charge cannot leave the dielectric; instead, it

goes to the dielectric’s outer boundary. To see how this works, let’s go back to the example
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of a solid dielectric ball with a free charge ¢ stuck at the ball’s center. Earlier we used Gauss
Law and spherical symmetry to show that

qr

D(I‘) = m

(52)

both inside and outside the dielectric ball. For the linear dielectric, this displacement field

translates into the tension field

E(r) = 4q % outside the ball,

WZ() r . (53)
E(r) = 1 —  inside the ball.

Teey T

The field inside the ball corresponds to a point net charge at the center
q
Qnet[center] = = (54)
€

in perfect agreement with eq. (49). Physically, the net charge is reduced from ¢ to ¢/e by
the bound point charge

Qpet lcenter] = Queg[center] — ¢ X q (55)

which partially screens the free charge ¢.

Now consider the ball’s surface at r = R where the electric field (53) has a discontinuity,

which indicates the surface charge density

. 1
o = ¢disc(E,) = 47TqRQ <1 — E) (56)

Physically, this is the surface bound charge stemming from the polarization

1 —1 gi
P:D—eOE:D<1——)=6 qr

€ e Admr?’

e—1 ¢
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The net bound charge at the surface amounts to

-1
Qiet [surface] = 47R* x 0y, = ‘ — X4 (58)

which is precisely the opposite of the bound charge (55) at the ball’s center,

—1
Qhitmalsurtace] = “—= x ¢ = —Qpqlcenter] (59)

In less symmetric situations, the bound charges in the dielectric’s bulk follow from the

free charges according to eq. (49), but the bound charges on the dielectric’s surface are much

harder to figure out. My next set of noted gives two examples of such dielectric boundary

problems: (1) a dielectric ball in external electric field, and (2) a point charge above a thick

dielectric slab.

But for the moment, let me consider a much simpler setup: a parallel-plate capacitor
filled with a uniform dielectric,
+ + + + | + + + +

Let d be the distance between the plates and A the plates’ area. Given the voltage V' between

the capacitor plates, the electric field inside the capacitor is approximately uniform
E = — (60)

in the direction from the negative plate to the positive plate, and hence inside the dielectric

D = eeFE = €y % % (61)

At the boundaries of the dielectric there are both bound charges due to polarization and

free charges on the capacitor plates. However, the displacement field cares only about the
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free charges, so to maintain the field D inside the capacitor, we need the plates to have free

charge densities

Ofee = ED. (62)

That is
Otopplate — +D, Obottom plate = —D. (63)

Altogether, the plates have net charges +() where
1%
Q:Axafree:AxD:AxeeoxE. (64)

In other words, Q = C' x V where the capacitance C' is

A
C = eeg—. (65)
d
Thus, comparing this capacitor to a capacitor with the same plate geometry but without

the dielectric, we find that filling a capacitor with dielectric increases its capacitance by the

factor of e,

C[with dielectric] = € x C[without dielectric]. (66)

The same rule applies to all capacitor geometries — parallel plates, coaxial cylinders,
concentric spheres, whatever — as long as the space between the plates is completely filled
up with a dielectric. For example, for coaxial cylindrical plates of length L and radii a and
b,
2meg L

C = ex m, (67)
for concentric spheres of radii @ and b,
4meg ab
C = ex . (68)

etc., etc. However, the capacitors that are only partially filled with a dielectric are more

complicated, and you should see a few relatively simple examples in your homework.
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