
QED Vertex Correction

Consider the dressed electron-electron-photon vertex in QED,

ieΓµ(p′, p) = 1PI (1)

We are interested in this vertex in the context of elastic Coulomb scattering,

e−

e−

X

X

(2)

so we take the incoming and the outgoing electrons to be on-shell, p2 = p′2 = m2, but the photon

is off-shell, q2 6= 0. Moreover, we put the vertex in the context of the complete electron line —

including the external line factors, thus ū(p′)× ieΓµ × u(p). As discussed in class, this simplifies

the Lorentz and Dirac structure of the vertex and allows us to write it as

Γµ(p′, p) = Fel(q
2)×

(p′ + p)µ

2m
+ Fmag(q

2)×
iσµνqν
2m

= F1(q
2)× γµ + F2(q

2)×
iσµνqν
2m

. (3)

At the tree level, the electron is a point-like spin = 1
2 particle obeying Dirac equations, hence

F1(q
2) ≡ 1 and F2(q

2) ≡ 0. But the quantum corrections in QED mix the elementary electron

state with the composite states like
∣

∣e−γ
〉

,
∣

∣e−γγ
〉

, or
∣

∣e−e−e+
〉

, and this leads to the non-trivial

q2–dependent form-factors.

In these notes we shall calculate the F1(q
2) and the F2(q

2) form-factors to the one-loop order

in QED.
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Working Through the Algebra

Fortunately, there is only one 1PI one-loop diagram contributing to the dressing-up of the

electron-electron-photon vertex, namely

(4)

Using the Feynman gauge for the internal photon’s propagator, this diagram evaluates to

ieΓµ
1 loop(p

′, p) =

∫

reg

d4k

(2π)4
−igνλ

k2 + i0
× ieγν ×

i

6p′+ 6k −m+ i0
× ieγµ ×

i

6p+ 6k −m+ i0
× ieγλ

= e3
∫

reg

d4k

(2π)4
1

k2 + i0
× γν ×

6p′+ 6k +m

(p′ + k)2 −m2 + i0
× γµ ×

6p+ 6k +m

(p+ k)2 −m2 + i0
× γν

= e3
∫

reg

d4k

(2π)4
N µ

D

(5)

where

N µ = γν(6k+ 6p′ +m)γµ(6k+ 6p+m)γν (6)

and

D =
[

k2 + i0
]

×
[

(p+ k)2 −m2 + i0
]

×
[

(p′ + k)2 −m2 + i0
]

. (7)

The purpose of this section of the notes is to simplify these numerator and denominator. Using

the Feynman parameter trick, we may combine the 3 denominator factors as

1

D
=

1
∫∫∫

0

dx dy dz δ(x+ y+ z− 1)
2

[

x((p+ k)2 −m2) + y((p′ + k)2 −m2) + z(k2) + i0
]3 . (8)
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Inside the big square brackets here we have

[· · ·] = x×
(

(p+ k)2 −m2
)

+ y ×
(

(p′ + k)2 −m2
)

+ z × k2

= k2 × (x+ y + z = 1) + 2kµ(xp + yp′)µ + x(p2 −m2) + y(p′2 −m2)

= (k + xp+ yp′)2 − ∆

(9)

where

∆ = (xp + yp′)2 − xp2 − yp′2 + (x+ y)m2

= xy ×
(

2p · p′ = p2 + p′2 − (p′ − p)2
)

+ (x2 − x)× p2 + (y2 − y)× p′2 + (x+ y)×m2

= −xy × q2 − x(1− x− y)× p2 − y(1− x− y)× p′2 + (x+ y)×m2

= −xy × q2 − xz × p2 − yz × p′2 + (1− z)×m2

(10)

For the on-shell electron momenta, p2 = p′2 = m2, we may further simplify

(1− z)×m2 − xz × p2 − yz × p′2 = m2 ×
(

(1− z) − (x+ y)z = (1− z)2
)

(11)

which gives

∆ = (1− z)2 ×m2 − xy × q2. (12)

Let us also define the shifted loop momentum

ℓ = k + xp + yp′, (13)

then we can rewrite the denominator as

1

D
=

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)
2

[ℓ2 −∆+ i0]3
. (14)

As usual, we plug this denominator into the loop integral (5), then change the order of inte-

gration —
∫

over the loop momentum before
∫

over the Feynman parameters, — and then shift
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the momentum integration variable from k to ℓ, thus

Γµ
1 loop(p

′, p) = −2ie2
1

∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

reg

d4ℓ

(2π)4
N µ

[

ℓ2 −∆+ i0
]3

. (15)

But to make full use of the momentum shift, we need to re-express the numerator N µ in terms of

the shifted momentum ℓ. It would also help to simplify the numerator (6) in the context of this

monstrous integral.

The first step towards simplifying the N µ is obvious: Let us get rid of the γν and γν factors

using the γ matrix algebra, eg., γν 6aγν = −2 6a, etc.. However, in order to allow for the dimensional

regularization, we need to re-work the algebra for an arbitrary spacetime dimension D where

γνγν = D 6= 4. Consequently,

γν 6aγν = −2 6a + (4−D) 6a,

γν 6a 6bγν = 4(ab) − (4−D) 6a 6b,

γν 6a 6b 6cγν = −2 6c 6b 6a + (4−D) 6a 6b 6c,

(16)

and therefore

N µ def
= = γν(6k+ 6p′ +m)γµ(6k+ 6p+m)γν

= −2m2γµ + 4m(p′ + p + 2k)µ − 2(6p+ 6k)γµ(6p′+ 6k)

+ (4−D)(6p′+ 6k −m)γµ(6p+ 6k −m).

(17)

The second step is to re-express this numerator in terms of the loop momentum ℓ rather than

k using eq. (13). Expanding the result in powers of ℓ, we get quadratic, linear and ℓ–independent

terms, but the linear terms do not contribute to the
∫

dDℓ integral because they are odd with

respect to ℓ → −ℓ while everything else in that integral is even. Consequently, in the context of
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eq. (15) we may neglect the linear terms, thus

N µ = −2m2γµ + 4m(p′ + p+ 2ℓ− 2xp− 2yp′)µ

− 2(6p+ 6ℓ− x 6p− y 6p′)γµ(6p′+ 6ℓ− x 6p− y 6p′)

+ (4−D)(6p′+ 6ℓ− x 6p− y 6p′ −m)γµ(6p+ 6ℓ− x 6p− y 6p′ −m)

〈〈skipping terms linear in ℓ 〉〉

∼= −2m2γµ + 4m(p + p′ − 2xp− 2yp′)µ

− 2 6ℓγµ6ℓ − 2(6p− x 6p− y 6p′) γµ (6p′ − x 6p− y 6p′)

+ (4−D) 6ℓγµ6ℓ + (4−D)(6p′ − y 6p′ − x 6p−m) γµ (6p− x 6p− y 6p′ −m).

(18)

Next, we make use of p′ − p = q and 1− x− y = z to rewrite

2xp + 2yp′ = (x+ y)× (p+ p′) + (x− y)× (p− p′),

p + p′ − 2xp − 2yp′ = z × (p′ + p) + (x− y)× q,

p − xp − yp′ = z × p − y × q

= z × p′ − (1− x)× q,

p′ − xp − yp′ = z × p′ + x× q

= z × p + (1− y)× q,

(19)

and consequently

N µ ∼= −2m2γµ + 4mz(p′ + p)µ + 4m(x− y)qµ

+ (−2 + 4−D)×6ℓγµ6ℓ

− 2(z 6p′ + (x− 1) 6q) γµ (z 6p+ (1− y) 6q)

+ (4−D)(z 6p′ + x 6q −m) γµ (z 6p− y 6q −m).

(20)

The third step is to make use of the external fermions being on-shell. This means more than

just p2 = p′2 = m2: We also sandwich the vertex ieΓµ between the Dirac spinors ū(p′) on the left

and u(p) on the right. The two spinors satisfy the appropriate Dirac equations 6 pu(p) = mu(p)

and ū(p′) 6p′ = ū(p′)m, so in the context of ū(p′)Γµu(p),

A×6p ∼= A×m and 6p′ ×B ∼= m×B (21)

for any terms in Γµ that look like A× 6 p or 6 p′ × B for some A or B. Consequently, the terms on
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the last two lines of eq. (20) are equivalent to

(z 6p′ + (x− 1) 6q) γµ (z 6p+ (1− y) 6q) ∼= (zm+ (x− 1) 6q) γµ (zm+ (1− y) 6q)

= z2m2 × γµ − (1− x)(1− y)×6qγµ 6q

+ z(x− y)m×
(

1
2{γ

µ,6q} = qµ
)

+ z(2− x− y)m×
(

1
2 [γ

µ,6q] = −iσµνqν

)

(z 6p′ + x 6q −m) γµ (z 6p− y 6q −m) ∼= ((z − 1)m+ x 6q) γµ ((z − 1)m− y 6q)

= (1− z)2m2 × γµ − xy×6qγµ 6q

− (1− z)(x− y)m×
(

1
2{γ

µ,6q} = qµ
)

+ (1− z)(x+ y)m×
(

1
2 [γ

µ,6q] = −iσµνqν

)

.

(22)

Let’s plug these expressions back into eq. (20), collect similar terms together, and make use of

(1− x)(1 − y) = 1− x− y + xy = z + xy. This gives us

N µ ∼= −(D − 2) 6ℓγµ6ℓ + 4mz(p′ + p)µ

+ m2γµ ×
(

−2− 2z2 + (4−D)(1− z)2
)

+ 6qγµ6q ×
(

2(z + xy) − (4−D)xy
)

+ mqµ × (x− y)
(

4− 2z − (4−D)(1− z)
)

+ imσµνqν ×
(

2z(1 + z) − (4−D)(1− z)2
)

.

(23)

Furthermore, in the context of the Dirac sandwich ū(p′)Γµu(p) we have

6qγµ6q = 2qµ 6q − q2γµ ∼= −q2γµ (24)

because ū(p′) 6qu(p) = 0, and also

(p′ + p)µ ∼= 2mγµ − iσµνqµ (25)

(the Gordon identity). Plugging these formulae into eq. (23), we arrive at

N µ ∼= −(D − 2) 6ℓγµ6ℓ + m2γµ ×
(

8z − 2(1 + z2) + (4−D)(1− z)2
)

− q2γµ ×
(

2(z + xy)− (4−D)xy
)

− imσµνqν × (1− z)
(

2z + (4−D)(1− z)
)

+ mqµ × (x− y)
(

4− 2z − (4−D)(1− z)
)

.

(26)
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To further simplify this expression, let us go back to the symmetries of the integral (15). The

integral over the Feynman parameters, the integral
∫

dDℓ, and the denominator [l2 − ∆]3 are all

invariant under the parameter exchange x ↔ y. In eq. (26) for the numerator, the first two lines

are invariant under this symmetry, but the last line changes sign. Consequently, only the first two

lines contribute to the integral (15) while the third line integrates to zero and may be disregarded,

thus

N µ ∼= −(D − 2) 6ℓγµ6ℓ + m2γµ ×
(

8z − 2(1 + z2) + (4−D)(1− z)2
)

− q2γµ ×
(

2(z + xy)− (4−D)xy
)

− imσµνqν × (1− z)
(

2z + (4−D)(1− z)
)

.
(27)

Finally, thanks to the Lorentz invariance of the
∫

dDℓ integral,

ℓλℓν ∼= gλν ×
ℓ2

D
, (28)

and hence

6ℓγµ6ℓ = γλγµγν × ℓλℓν ∼= γλγµγν × gλν
ℓ2

D
= −(D − 2)γµ ×

ℓ2

D
. (29)

Plugging this formula into eq. (26) and grouping terms according to their γ–matrix structure, we

arrive at

N µ = N1 × γµ − N2 ×
iσµνqν
2m

(30)

where

N1
∼=

(D − 2)2

D
× ℓ2 +

(

8z − 2(1 + z2) + (4−D)(1− z)2
)

×m2

−
(

2(z + xy)− (4−D)xy
)

× q2

=
(D − 2)2

D
× ℓ2 − (D − 2)×∆ + 2z × (2m2 − q2), (31)

N2
∼= (1− z)

(

4z + 2(4−D)(1− z)
)

×m2. (32)

Note that splitting the numerator according to eq. (30) is particularly convenient for calculating

the electron’s form factors:

Γµ
1 loop = F 1 loop

1 (q2)× γµ + F 1 loop
2 (q2)×

iσµνqν
2m

, (33)
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F 1 loop
1 (q2) = −2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N1

[

ℓ2 −∆+ i0
]3 , (34)

F 1 loop
2 (q2) = +2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N2

[

ℓ2 −∆+ i0
]3 . (35)

Electron’s Gyromagnetic Moment

As explained earlier in class, electron’s spin couples to the static magnetic field as

Ĥ ⊃
−eg

2me
S ·B where g = 2

(

Fmag = F1 + F2

)
∣

∣

∣

q2=0
. (36)

The electric form factor F1 ≡ Fel for q
2 = 1 is constrained by the Ward identity,

F tot
1 = F tree

1 + F loops
1 + F counter−terms

1 −−−→
q2→0

1. (37)

Therefore, the gyromagnetic moment is

g = 2 + 2F2(q
2 = 0) (38)

where F2 = F loops
2 because the there are no tree-level or counter-term contributions to the F2,

only to the F1. Thus, to calculate the g − 2 at the one-loop level, all we need is to evaluate the

integral (35) for q2 = 0.

Let’s start with the momentum integral

∫

dDℓ

(2π)D
N2

[

ℓ2 −∆+ i0
]3 (39)

where ∆ = (1− z)2m2 for q2 = 0 and N2 is as in eq. (32). Because the numerator here does not

depend on the loop momentum ℓ, this integral converges in D = 4 dimensions and there is no
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need for dimensional regularization. All we need is to rotate the momentum into Euclidean space,

∫

d4ℓ

(2π)4
N2

[

ℓ2 −∆+ i0
]3 = N2 ×

∫

i d4ℓE
(2π)4

1

−(ℓ2E +∆)3

=
−iN2

16π2
×

∞
∫

0

dℓ2E
ℓ2E

(ℓ2E +∆)3

=
−iN2

16π2
×

1

2∆

=
−i

32π2
×

N2 = 4z(1− z)m2 〈〈for D = 4〉〉

∆ = (1− z)2m2 〈〈for q2 = 0〉〉

=
−i

32π2
×

4z

1− z
.

(40)

Substituting this formula into eq. (35), we have

F 1 loop
2 (q2 = 0) =

e2

16π2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)×
4z

1− z
. (41)

The integrand here depends on z but not on the other two Feynman parameters, so we can

immediately integrate over x and y and obtain

1
∫∫

0

dx dy δ(x+ y + z − 1) =

1−z
∫

0

dx = 1− z. (42)

Consequently,

F 1 loop
2 (q2 = 0) =

e2

16π2
×

1
∫

0

dz (1− z)×
4z

1− z
=

e2

16π2
× 2 =

α

2π
(43)

and the gyromagnetic moment is

g = 2 +
α

π
+ O(α2). (44)
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The higher-loop corrections to this gyromagnetic moment are harder to calculate because the

number of diagrams grows very rapidly with the number of loops; at the 4-loop order there are

thousands of diagrams, and one needs a computer just to count them! Also, at higher orders one

has to include the effects of strong and weak interactions because the photons interact with hadrons

and W± particles, which in turn interact with other hadrons, Z0, Higgs, etc., etc. Nevertheless,

people have calculated the electron’s and the muon’s anomalous magnetic moments

ae =
ge − 2

2
= F electron

2 (0) and aµ =
gµ − 2

2
= Fmuon

2 (0) (45)

to the order α4 back in the 1970s, and more recent calculations are good up to the order α5.

Meanwhile, the experimentalists have measured ae to a comparable accuracy of 12 significant

digits and aµ to 9 significant digits

aexpe = 0.001 159 652 180 73 (28), aexpµ = 0.001 165 920 91 (63). (46)

The theoretical value of the electron’s anomalous magnetic moment is in good agreement with the

experimental value, while for the muon there is a small discrepancy aexpµ −atheoryµ ≈ (27±8)·10−10.

This discrepancy might stem from some physics beyond the Standard Model, maybe supersym-

metry, maybe something else. Note that the effect of heavy particles on the aµ is proportional to

(mµ/Mheavy)
2, that’s why the muon’s anomalous magnetic moment is much more sensitive to the

new physics than the electron’s.

However, the discrepancy between the aexpµ and the atheoryµ might also stem from a small

theoretical error in modeling the photon-hadron interactions, which affects the atheoryµ via 2+ loop

diagrams like

hadrons (47)

For a recent review of the muon’s high-precision anomalous magnetic moment — both the exper-

iments and the theory — see Particle Data Group review, §57, and the references cited therein.

10

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-g-2-muon-anom-mag-moment.pdf


I would like to complete this section of the notes by calculating the F 1 loop
2 (q2) form factor for

q2 6= 0. Proceeding as in eq. (40) but letting ∆ = (1− z)2m2 − xyq2, we have

∫

d4ℓ

(2π)4
N2

[

ℓ2 −∆+ i0
]3 =

−i

32π2
×

4z(1 − z)m2

(1− z)2m2 − xyq2
(48)

and hence

F 1 loop
2 (q2) =

e2

16π2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)×
4z(1 − z)m2

(1− z)2m2 − xyq2
. (49)

To evaluate this integral over Feynman parameters, we change variables from x, y, z to w = 1− z

and ξ = x/(x+ y),

x = wξ, y = w(1− ξ), z = 1− w, dx dy dz δ(x+ y + z − 1) = w dw dξ. (50)

Consequently,

F 1 loop
2 (q2) =

e2

16π2

1
∫

0

dξ

1
∫

0

dww ×
4(1− w)w ×m2

w2 ×m2 − w2ξ(1− ξ)× q2

=
e2

16π2

1
∫

0

dξ
m2

m2 − ξ(1− ξ)q2
×

1
∫

0

dww ×
4w(1− w)

w2

=
e2

8π2
×

1
∫

0

dξ
m2

m2 − ξ(1− ξ)q2

=
α

2π
×

4m2

√

q2 × (4m2 − q2)
× arctan

√

q2

4m2 − q2

=
α

2π
×

4m2

√

(−q2)× (4m2 − q2)
× log

√

4m2 − q2 +
√

−q2

2m
.

(51)

For q2 < 0 and −q2 ≫ m2,

F 1 loop
2 (q2) ≈

α

2π
×

2m2

−q2
× log

−q2

m2
. (52)
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The Electric Form Factor

Now consider the electric form factor F1(q
2). In the first section we have obtained

F 1 loop
1 (q2) = −2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N1

[

ℓ2 −∆+ i0
]3 , (34)

for

N1
∼=

(D − 2)2

D
× ℓ2 − (D − 2)×∆ + 2z × (2m2 − q2) (31)

and ∆ = (1− z)2m2 − xyq2.

Let’s start by calculating the momentum integral in eq. (34). The numerator N1 depends on

ℓ as aℓ2 + b, so there is a logarithmic UV divergence for ℓ → ∞; to regularize this divergence, we

work in D = 4− 2ǫ dimensions. Thus,

−i

∫

reg

d4ℓ

(2π)4
aℓ2 + b

[ℓ2 −∆+ i0]3
≡ −iµ4−D

∫

dDℓ

(2π)D
aℓ2 + b

[ℓ2 −∆+ i0]3
=

= −iµ4−D

∫

idDℓE
(2π)D

−aℓ2E + b

−[ℓ2E +∆]3

= µ4−D

∫

dDℓE
(2π)D

×

[

aℓ2E − b

(ℓ2E +∆)3
=

a

(ℓE +∆)2
−

a∆+ b

(ℓ2E +∆)3

]

= µ4−D

∫

dDℓE
(2π)D

∞
∫

0

dt
(

a× t − (a∆+ b)× 1
2t

2
)

× e−t(∆+ℓ2E)

=

∞
∫

0

dt
(

a× t − (a∆+ b)× 1
2t

2
)

e−t∆ × µ4−D

∫

dDℓE
(2π)D

e−tℓ2e

=

∞
∫

0

dt
(

a× t − (a∆+ b)× 1
2t

2
)

e−t∆ ×
µ4−D

(4πt)D/2

=
µ4−D

(4π)D/2

∞
∫

0

dt e−t∆ ×
(

a× t1−(D/2) − 1
2(a∆+ b)× t2−(D/2)

)

=
µ4−D

(4π)D/2

{

a× Γ
(

2− D
2

)

×∆
D
2 −2 − 1

2(a∆+ b)× Γ
(

3− D
2

)

×∆
D
2 −3

}

→
(4πµ2)ǫ

16π2
×

Γ(1 + ǫ)

∆ǫ
×

{

a

ǫ
−

a∆+ b

2∆

}

.

(53)
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Going back to eq. (31), we identify a and b in eq. (52) as

a =
(D − 2)2

D
=

2(1− ǫ)2

2− ǫ
,

b = 2z × (2m2 − q2) − (D − 2)×∆ = b̂ − 2(1− ǫ)∆ ,

where b̂ = 2z(2m2 − q2).

(54)

Consequently, on the last line of eq. (53) we have

a

ǫ
−

a∆+ b

2∆
= a×

(

1

ǫ
−

1

2

)

+
2(1− ǫ)∆

2∆
−

b̂

2∆

=
2(1− ǫ)2

2− ǫ
×

2− ǫ

2ǫ
+ (1− ǫ) −

b̂

2∆

=
1− ǫ

ǫ
× ((1− ǫ) + ǫ = 1) −

b̂

2∆

=
1− ǫ

ǫ
−

z(2m2 − q2)

∆
,

(55)

so the momentum integral for the electric form factors evaluates to

−2ie2µ4−D

∫

dDℓ

(2π)D
N1

[ℓ2 −∆+ i0]3
= (56)

=
α

2π

(

4πµ2

∆

)ǫ{

Γ(ǫ)× (1− ǫ) − Γ(1 + ǫ)×
z × (2m2 − q2)

∆

}

.

The next step in our calculation is to integrate the result in eq. (56) over the Feynman pa-

rameters. Changing the integration variables from x, y, z to w and ξ according to eq. (50), we

have

F 1 loop
1 (q2) =

α

2π
(4πµ2)ǫ

1
∫

0

dξ

1
∫

0

dww ×















(1− ǫ)Γ(ǫ)×
1

[∆(w, ξ)]ǫ

− Γ(1 + ǫ)×
(1− w)(2m2 − q2)

[∆(w, ξ)]1+ǫ















(57)

where

∆(w, ξ) = (1− z)2m2 − xyq2 = w2 ×
(

m2 − ξ(1− ξ)q2
)

, (58)

or equivalently,

∆(w, ξ) = w2 ×H(ξ) where H(ξ)
def
= m2 − ξ(1− ξ)q2. (59)
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The form (59) is particularly convenient for evaluating the
∫

dw integral in eq. (57), which becomes

1
∫

0

dw

{

2(1− ǫ)Γ(ǫ)

Hǫ
×

w

w2ǫ
− 2Γ(1 + ǫ)×

2m2 − q2

H1+ǫ
×

w(1− w)

w2+2ǫ

}

. (60)

Near the lower limit w → 0, the integrand is dominated by the second term, which is proportional

to w−1−2ǫ. But for any ǫ ≥ 0 — i.e., for any dimension D ≤ 4 — the integral

positive
∫

0

dw

w1+2ǫ
(61)

diverges: For D = 4 the divergence is logarithmic while for D < 4 it becomes power-like.

The Infrared Divergence

Physically, the divergence (61) is infrared rather than ultraviolet, that’s why it gets worse as

we lower the dimension D. Indeed, let’s go back to the diagram (4) and look at the denominator

D in eqs. (5) and (7). Taking the electron’s momenta p and p′ on-shell before introducing the

Feynman parameters, we have

(p+ k)2 − m2 = k2 + 2kp + p2\ − m2\ = k2 + 2kp = O(|k|) when k → 0, (62)

and likewise

(p′ + k)2 − m2 = k2 + 2kp′ = O(|k|) when k → 0. (63)

Combining these two electron propagators with the O(1/k2) photon propagators, we see that the

net denominator behaves as D ∝ |k|4 for k → 0 the numerator N µ remains finite, which makes

the integral
∫

dDk
N µ

D
∝

∫

dDk

|k|4
(64)

diverge for k → 0. In D = 4 dimensions, the infrared divergence here is logarithmic, while in

lower dimensions D < 4 it becomes power-like, i.e. O
(

(1/kmin)
4−D

)

— precisely as in eqs. (61)

and (60).
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We can regularize the infrared divergence (64) — and also (61) — by analytically continuing

the spacetime dimension toD > 4. Such dimensional regularization of the IR divergences is used in

many situations in both QFT and condensed matter. However, taking D > 4 makes the ultraviolet

divergences worse, so if some amplitude has both UV and IR divergences, we cannot cure both

of them at the same time by analytically continuing to D 6= 4. In particular, when calculating

the electric form factor F1(q
2) of the electron, we need D < 4 to regulate the momentum integral

∫

dDℓ, but then we need D > 4 to regulate the integral over the Feynman parameters.

A common dirty trick is to first continue to D < 4, shift the loop momentum from kµ to

ℓµ = kµ + shift, evaluate the
∫

dDℓ momentum integral in D < 4 dimension, then analytically

continue the result to D > 4 and integrate over the Feynman parameters, and ultimately continue

the final result to D = 4. However, in this kind of dimensional regularization it is hard to

disentangle the 1/ǫ poles coming from the UV divergence log(Λ2/µ2) from the 1/ǫ poles coming

from the IR divergence log(µ2/k2min), so we are not going to use it here.

Instead, we are going to use DR for the UV divergence only, while the IR divergence is regulated

by a tiny but not-quite-zero photon mass m2
γ ≪ m2

e. Strictly speaking, a massive vector particle

has three polarization states and its propagator is

=
−i

k2 −m2
γ + i0

×

(

gµν −
kµkν

m2
γ

)

. (65)

However, the longitudinal polarization of the massive but ultra-relativistic photon does not couple

to a conserved current, so we are going to disregard the kµkν terms in the propagator (65) and

use

=
−igµν

k2 −m2
γ + i0

. (66)

In other words, we use the Feynman gauge in spite of the photon’s mass; this is not completely

consistent, but the inconsistencies go away in the mγ → 0 limit.

Using this infrared regulator for the internal photon line in the one-loop diagram (4), we get

the vertex amplitude that looks exactly like eq. (5) except for one factor in the denominator,

1

k2 + i0
becomes

1

k2 −m2
γ + i0

. (67)

In terms of the integral (15), this change has no effect on the numerator N µ or the loop momentum
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ℓ (which remains exactly as in eq. (13)), but the ∆ in the denominator becomes

∆′(x, y, z) = ∆(x, y, z) + z ×m2
γ . (68)

Consequently, the electric form factor is

F 1 loop
1 (q2) =

∫

d(FP )

∫

µ4−D dDℓ

(2π)D
−2ie2 ×N1

[ℓ2 −∆′ + i0]3
, (69)

exactly as in eq. (34), except for the ∆′ instead of the ∆ in the denominator. The momentum

integral here converges for any D < 4 and it evaluates exactly as in eq. (53). The only subtlety

here is that in the numerator, the ℓ–independent term b involves the un-modified ∆ instead of ∆′

(cf. eq. (54)), but we can fix that by writing

b = 2z ×
(

2m2
e − q2 + (1− ǫ)m2

γ

)

− 2(1− ǫ)×∆′. (70)

Hence, instead of eq. (57) we get

F 1 loop
1 (q2) =

α

2π
(4πµ2)ǫ

1
∫

0

dξ

1
∫

0

dww ×















(1− ǫ)Γ(ǫ)×
1

[∆′(w, ξ)]ǫ

− Γ(1 + ǫ)×
(1− w)(2m2

e − q2 + (1− ǫ)m2
γ)

[∆′(w, ξ)]1+ǫ















(71)

where

∆′(w, ξ) = (1− z)2m2
e − xyq2 + zm2

γ = w2 ×H(ξ) + (1− w)×m2
γ . (72)

Note that the photon’s mass is tiny, m2
γ ≪ m2

e, q
2; were it not for the IR divergences, we

would have used m2
γ = 0. This allows us to neglect various O(m2

γ) terms in eq. (71) except when

it would cause a divergence for w → 0; in particular, we may neglect the (1 − ǫ)m2
γ term in the

numerator of the second term in the integrand. As to the denominators, in eq. (72) the second

term containing the photon’s mass becomes important only in the w → 0 limit, and in that limit
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(1− w)m2
γ → m2

γ . Thus, we approximate

∆′(w, ξ) ≈ w2 ×H(ξ) + m2
γ (73)

and the
∫

dw integral in eq. (71) becomes

1
∫

0

dww ×

{

(1− ǫ)Γ(ǫ)×
1

[w2H(ξ) +m2
γ ]

ǫ
− Γ(1 + ǫ)×

(1− w)(2m2
e − q2)

[w2H(ξ) +m2
γ ]

1+ǫ

}

=
(1− ǫ)Γ(ǫ)

Hǫ
×

1
∫

0

dww

[w2 + (m2
γ/H)]ǫ

+ Γ(1 + ǫ)
2m2

e − q2

H1+ǫ
×

1
∫

0

dww2

[w2 + (m2
γ/H)]1+ǫ

− Γ(1 + ǫ)
2m2

e − q2

H1+ǫ
×

1
∫

0

dww

[w2 + (m2
γ/H)]1+ǫ

.

(74)

For 0 < ǫ < 1
2 — i.e., for 3 < D < 4 — the integrals on the second and third lines here converge

even for m2
γ = 0,

1
∫

0

dww

[w2]ǫ
=

1

2− 2ǫ
for ǫ < 1,

1
∫

0

dww2

[w2]1+ǫ
=

1

1− 2ǫ
for ǫ < 1

2 ,

(75)

so we may just as well evaluate them without the photon’s mass. Only on the last line of eq. (74)

we do need m2
γ 6= 0 to make the integral converge for some D ≤ 4:

1
∫

0

dww

[w2 + (m2
γ/H)]1+ǫ

=
−1

2ǫ

1

[w2 + (m2
γ/H)]ǫ

∣

∣

∣

∣

1

0

=
1

2ǫ

[(

H

m2
γ

)ǫ

− 1

]

. (76)
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Combining all these
∫

dw integrals together, we get

1
∫

0

dw
{

· · ·
}

=
Γ(ǫ)

2Hǫ
+

Γ(1 + ǫ)

1− 2ǫ
×

2m2
e − q2

H1+ǫ
−

Γ(1 + ǫ)

2ǫ
×

2m2
e − q2

H1+ǫ
×

[(

H

m2
γ

)ǫ

− 1

]

=
Γ(ǫ)

2Hǫ
×

{

1 +
2m2

e − q2

H(ξ)
×

(

2ǫ

1− 2ǫ
+ 1 =

1

1− 2ǫ

)

−
2m2

e − q2

H(ξ)
×

(

H(ξ)

m2
γ

)ǫ}

(77)

and hence

F 1 loop
1 (q2) =

α

4π

1
∫

0

dξ Γ(ǫ)

(

4πµ2

H(ξ)

)ǫ

×

{

1 +
2m2

e − q2

H
×

[

1

1− 2ǫ
−

(

H

m2
γ

)ǫ]}

(78)

where

H(ξ) = m2
e − ξ(1− ξ)q2. (59)

Before we even try to perform this last integral, let’s remember that

Γµ
net = γµtree + Γµ

loops + δ1 × γµ (79)

and hence

F net
1 (q2) = 1tree + F loops

1 (q2) + δ1 . (80)

Also, the net electric charge does not renormalize, so we must have

F net
1 (q2) → 1 for q2 → 0 (81)

and hence

δ1 = −F loops
1 (q2 = 0). (82)

In particular, the δ1 counterterm to the order α follows from eq. (78) for q2 = 0, in which case

H(ξ) ≡ m2
e and the

∫

dξ integral becomes trivial (the integrand does not depend on ξ at all).
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Thus,

δ1 = −
α

4π
Γ(ǫ)

(

4πµ2

m2
e

)ǫ

×

{

1 +
2

1− 2ǫ
− 2

(

m2
e

m2
γ

)ǫ}

+ O(α2). (83)

This formula holds for any dimension D between 3 and 4 (i.e., 0 < ǫ < 1
2). In the D → 4 limit, it

becomes

δ1 = −
α

4π
×

{

1

ǫ
− γE + log

4πµ2

m2
e

+ 4 − 2 log
m2

e

m2
γ

}

+ O(α2). (84)

Now let’s go back to the electric form factor F net
1 (q2) for q2 6= 0. According to eqs. (80)

and (82), at the one-loop level

F net
1 (q2) − 1 = F 1 loop

1 (q2) − F 1 loop
1 (0) + O(α2) (85)

where F 1 loop
1 (q2) is given by eq. (78). Taking the ǫ → 0 limit of that formula, we arrive at

F 1 loop
1 (q2) =

α

4π

1
∫

0

dξ

{

1

ǫ
− γE + log

4πµ2

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
H(ξ)

m2
γ

]}

, (86)

and now we should subtract a similar expression for q2 = 0. This subtraction cancels the UV

divergence and the associated 1/ǫ pole but not the IR divergence. Moreover, not only the sub-

tracted one-loop amplitude depends on the IR regulators, but the coefficient of the logm2
γ has a

non-trivial momentum dependence. Indeed,

F 1 loop
1 (q2) − F 1 loop

1 (0) =

=
α

4π

1
∫

0

dξ























1

ǫ
− γE + log

4πµ2

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
H(ξ)

m2
γ

]

−
1

ǫ
+ γE + log

4πµ2

m2
e

− 2×

[

2 − log
m2

e

m2
γ

]























=
α

4π

1
∫

0

dξ

{

log
m2

e

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
m2

e

m2
γ
− log

H(ξ)

m2
e

]

− 2

[

2 − log
m2

e

m2
γ

]}
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=
α

4π

[

2 − log
m2

e

m2
γ

]

×

1
∫

0

dξ

(

2m2
e − q2

H(ξ)
− 2

)

+
α

4π

1
∫

0

dξ log
m2

e

H(ξ)
×

(

1 +
2m2

e − q2

H(ξ)

)

. (87)

Following the textbook notations, let’s explicitly separate the IR divergent part here from the

finite part, thus

F orderα
1 (q2) = 1 −

α

2π
×

{

fIR(q
2)× log

m2
e

m2
γ
+ ffin(q

2)

}

+ O(α2)

= 1 −
α

2π
×

{

fIR(q
2)× log

−q2

m2
γ

+ f ′fin(q
2)

}

+ O(α2)

(88)

where

fIR(q
2) =

1
∫

0

dξ

(

2m2
e − q2

2H(ξ)
− 1

)

, (89)

ffin(q
2) =

1

2

1
∫

0

dξ

(

2m2
e − q2

H(ξ)
+ 1

)

× log
H(ξ)

m2
e

− 2fIR(q
2), (90)

f ′fin(q
2) = ffin(q

2) − fIR(q
2)× log

−q2

m2
e
. (91)

All three integrals here vanish for q2 = 0 — which upholds the F1(0) = 1 requirement — but have

finite non-zero values for all other q2. In particular, fIR(q
2) 6= 0, which means that the F1(q

2)

form factor (88) suffers from IR divergence at all q2 6= 0.

Also, for very large q2, the F orderα
1 − 1 grows like a quadratic polynomial in log(−q2/m2).

Indeed, in this limit

fIR(q
2) ≈ 2 log

−q2

m2
e

− 1, ffin(q
2) ≈

1

2
log2

−q2

m2
e

−
7

2
log

−q2

m2
e

+ 1 −
π2

6
, (92)

hence

F1(q
2) ≈ 1 −

α

2π

{

1

2
log2

−q2

m2
e

+

(

2 log
m2

e

m2
γ
−

7

2

)

log
−q2

m2
e

− 2 log
m2

e

m2
γ
+ const

}

+ Oα2). (93)

The leading log2 term here is known as the Sudakov’s double logarithm; it plays important role

in estimating radiative corrections (i.e., loop corrections) to various QED processes involving
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relativistic electrons. Unfortunately, I do not have class time to discuss it in any detail, or even

briefly.

Instead, let’s turn our attention to a more urgent question: How does the infrared divergence

of the F1 form factor affect the physical cross-sections of various QED processes? In the next

section I shall explain this issue in some detail, but let me summarize the bottom line here:

⋆ The S-matrix elements in QED between specific n-particle states are infrared-divergent, so

the exclusive scattering cross-sections such as σ(e− + X → e− + X + nothing else) are all

infrared-divergent.

⋆ However, the more inclusive cross-sections where the final states include optional soft photons

whose energies are too small to be detected in a real-life particle experiment, then such

inclusive cross-sections like σ(e−+X → e−+X+optional soft photons) are perfectly finite:

all the IR divergences cancel out.

Finite Cross-sections for IR–Divergent Amplitudes

In the previous section we saw that the one-loop correction to the electron’s electric form

factor F1(q
2) suffers from an infrared divergence. Many other QED amplitudes — essentially, all

the amplitudes involving on-shell electrons or positrons — also suffer from similar IR divergences

at the one-loop and higher-loop levels. At the same time, the processes involving emission of

soft (i.e., low-energy) photons have IR-divergent cross-sections already at the tree level; this is

explained in detail in §6.1 of the Peskin&Schroeder textbook. But somehow, the two kinds of

infrared divergences cancel out from the inclusive cross-sections in which we allow for optional

extra soft photons in the final state.

For example, consider elastic Coulomb scattering of an electron off a very heavy point-like

particle X :

e−

e−

X

X

(94)

For q2 ≪ M2
X , we may approximate the X particle as a static (non-recoiling) source of electric
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field, and in its rest frame (the lab frame), the scattering amplitude evaluates to

M(eX → eX)

2MX
=

4παeff(q
2)

q2
× ū(p′)Γ0(p′, p)u(p). (95)

At the tree level Γµ(p′, p) ≡ γµ, while at the one-loop level we get non-trivial form-factors. Focusing

at their infrared divergences, we have

F 1 loop
2 (q2) =

2α

2π
× finite (96)

while

F tree+1 loop
1 (q2) = 1 −

α

2π

(

fIR(q
2)× log

m2
e

m2
γ

+ finite

)

, (97)

and therefore

Γµ
tree+1 loop(p

′, p) =

(

1 −
α

2π
× fIR(q

2)× log
m2

e

m2
γ

)

× Γµ
tree +

α

2π
× finite. (98)

Plugging this one-loop vertex into the Coulomb scattering amplitude (95), we obtain

Mtree+1 loop(eX → eX) = Mtree(eX → eX)×

(

1 −
α

2π
× fIR(q

2)× log
m2

e

m2
γ
+

α

2π
× finite

)

(99)

and hence the partial cross-section

dσtree+1 loop(eX → eX)

dΩ
=

dσtree(eX → eX)

dΩ
×

×

(

1 −
α

π
× fIR(q

2)× log
m2

e

m2
γ
+

α

π
× finite + O(α2)

)

.

(100)

Note the IR divergence of the one-loop term in this cross-section. For future reference, I would

like to rephrase it in terms of log(Ee/mγ) rather than log(me/mγ), thus

dσtree+1 loop(eX → eX)

dΩ
=

dσtree(eX → eX)

dΩ
×

×

(

1 −
α

π
× 2fIR(q

2) log
Ee

mγ
+

α

π
× finite + O(α2)

)

.

(101)
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Now consider the inelastic scattering in which a photon is emitted, eX → eXγ,

e−

e−
γ

X

X

(102)

In general, an extra incoming or outgoing photon costs a factor e in the amplitude and hence a

factor α in the cross-section, thus at similar loop levels σ(eX → eXγ) = O(α) × σ(eX → eX).

Specifically, as explained in detail in §6.1 of the Peskin & Schroeder textbook, for a soft photon

whose energy is much smaller than the electron’s, ωγ ≪ Ee,

dσtree(eX → eXγ)

dΩe dωγ
=

dσtree(eX → eX)

dΩ
×

α

π
×

fIR(q
2)

ωγ
(103) (6.25)

where the coefficient fIR(q
2) is precisely as in eq. (89) for the IR divergence of the F1 form factor.

I shall derive eq. (103) in the Appendix to these notes. Meanwhile, let’s explore its consequences.

Integrating the partial cross-section (103) over the photon’s frequencies, we immediately run

into the infrared divergence:

∫

dωγ
dσ

dωγ
∝

ωmax∼Ee
∫

0

dωγ

ωγ
= ∞. (104)

To regulate this divergence, we need to impose a minimal energy requirement on the emitted

photon, and the simplest way to do this is to assume a tiny but non-zero photon mass mγ .

Consequently
∫

reg

dωγ

ωγ
= log

ωmax

mγ
+ finite = log

Ee

mγ
+ finite, (105)

and therefore

dσtree(eX → eXγ)

dΩ
=

dσtree(eX → eX)

dΩ
×

α

π

(

2fIR × log
Ee

mγ
+ finite

)

. (106)

Note that the IR divergence of this tree-level cross-section is precisely the same as of the one-loop
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cross-section (101), except for opposite signs,

dσtree+1 loop(Xe → Xe)

dΩ
=

dσtree(eX → eX)

dΩ
× (101)

×

(

1−
α

π
× 2fIR(q

2) log
Ee

mγ
+

α

π
× finite + O(α2)

)

,

dσtree(Xe → Xeγ)

dΩ
=

dσtree(eX → eX)

dΩ
× (106)

×

(

0+
α

π
× 2fIR(q

2) log
Ee

mγ
+

α

π
× finite

)

,

and therefore the combined cross-section has no infrared divergence:

dσtree+1 loop(Xe → Xe) + dσtree(Xe → Xeγ)

dΩe
=

dσtree(Xe → Xe)

dΩe
×
(

1 +
α

π
× finite + O(α)2

)

.

(107)

But what do we do with the IR divergences of the partial cross-sections (101) and (106)?

While it is OK to UV-regulate or IR-regulate the intermediate stages of a calculation, but a finite

result for a measurable quantity like a partial cross-section must be finite and it cannot depend on

an IR regulator like mγ . Nevertheless, eqs. (106) and (101) seem to contradict this rule, so what

gives?

To resolve this paradox, consider a real-life scattering experiment. No photon detector can

detect a photon with an arbitrarily low energy ωγ , there is always a threshold ωthr > 0 below

which the detector is blind. Thus, a final state |Xeγ〉 where the photon’s energy is below the

threshold — ωγ < ωthr — will be seen by the detector as simply |Xe〉 since the photon would

not be detected. In other words, observationally we should not classify the final states by the

net number of photons regardless of their energies, however low it might be. Instead, we should

count the number pf detectable photons with ωγ > ωthr. As to the soft photons with ωγ < ωthr,

the detector would not tell us if they are there or not, so the physically measurable cross-sections

should include all possible numbers of undetectably low-energy photons. In particular,
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dσ(X + e → observed X + e) = dσ(X + e → X + e) + dσ(X + e → X + e+ γ(ω < ωthr))

+ dσ(X + e → X + e + γ(ω < ωthr) + γ(ω < ωthr)) + · · · ,

dσ(X + e → observed X + e+ γ) = dσ(X + e → X + e+ γ(ω > ωthr))

+ dσ(X + e → X + e + γ(ω > ωthr) + γ(ω < ωthr)) + · · · ,

etc., etc.
(108)

To the order O(α × σtree(Xe → Xe)) = O(α3), we should stop at one final-state photon,

detectable or not, and calculate the dσ(Xe → Xe) to the one-loop level while the dσ(Xe → Xeγ)

just to the tree level. Thus,

dσ(X + e → observed X + e+ γ)

dΩe
≈

dσtree(X + e → X + e+ γ(ω > ωthr))

dΩe

=

ωmax=O(Ee)
∫

ωthr

dωγ
dσtree(X + e → X + e+ γ)

dΩe dωγ

=
dσtree(X + e → X + e)

dΩe
×

α

π

(

2fIR(q
2) log

Ee

ωthr
+ finite

)

,

(109)

where the last equality comes from

dσtree(eX → eXγ)

dΩe dωγ
=

dσtree(eX → eX)

dΩ
×

α

π
×

2fIR(q
2)

ωγ
〈〈 for ωγ ≪ Ee 〉〉 (103) (6.25)

and

ωmax=O(Ee)
∫

ωthr

dω

ω
= log

Ee

ωthr
+ finite. (110)

Note that observed the cross-section (109) is infrared finite and does not depend on the mγ (as

long as mγ ≪ ωthr). Instead, it depends on the photon detector’s low-energy threshold ωthr.
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Similarly, to the same order O(α× σtree(Xe → Xe) = O(α3),

dσ(X + e → observed X + e)

dΩe
≈

≈
dσtree+1 loop(X + e → X + e)

dΩe
+

dσtree(X + e → X + e+ γ(ω < ωthr))

dΩe

≈
dσtree(X + e → X + e)

dΩe
×

(

1−
α

π
× 2fIR(q

2) log
Ee

6mγ
+

α

π
× finite

)

+
dσtree(X + e → X + e)

dΩe
×

(

0+
α

π
× 2fIR(q

2) log
ωthr

6mγ
+

α

π
× finite

)

=
dσtree(X + e → X + e)

dΩe
×

(

1 −
α

π
× 2fIR(q

2) log
Ee

ωthr
+

α

π
× finite

)

.

(111)

Note how the IR regulator mγ cancels between the two contributions to the net observed cross-

section. Again, the observed cross-section is IR-finite, but it depends on the photon detector’s

threshold ωthr.

Similar cancellations of IR divergences from the observed cross-sections happen at the higher

loop orders. In general, to get a finite cross-section to the order O(αL× σtree) we should combine

an L-loop cross-section with no soft photons, an L− 1 loop cross-section with one soft photon, an

L−2 cross-section with 2 soft photons, etc., etc., ending with a tree-level cross-section with L soft

photons. Individually, all these formal cross-sections are infrared-divergent, but once we combine

them together into a complete observed cross-section, the IR divergence should cancel out. Please

read (or at least skim) textbook §6.5 to see how this works.

Appendix

To conclude these notes, let me derive eq. (103) for the soft-photon bremsstrahlung by the

scattered electron in the

e−

e−
γ

X

X

(112)
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process. At the tree level, we have 2 diagrams

e−

e−

X

X

γ

+

e−

e−

X

X

γ

which evaluate to

Mtree

2MX
=

e2

q2
×

(

ū(p′)γ0 ×
i

6p−6k −m
(ie 6ǫ∗)u(p) + ū(p′)(ie 6ǫ∗)

i

6p′+ 6k −m
× γ0u(p)

)

(113)

where ǫµ is the polarization vector of the outgoing photon. For the on-shell incoming electron and

outgoing photons

(p− k)2 − m2 = k2 − 2(pk) + p2 − m2 = −(2pk) (114)

and hence

i

6p−6k −m
(ie 6ǫ∗)u(p) = e

(6p−6k +m) 6ǫ∗

2(pk)
u(p) = e

2(pǫ∗)+ 6ǫ∗(m−6p−6k)

2(pk)
u(p) = e

2(pǫ∗)−6ǫ∗ 6k

2(pk)
u(p)

(115)

since (m− 6p)u(p) = 0. For a soft photon of energy k0 ≪ Ee we may neglect the 6 ǫ∗ 6k term in the

numerator on the RHS compared to the 2(pǫ∗) terms, thus

ū(p′)γ0 ×
i

6p−6k −m
(ie 6ǫ∗)u(p) ≈ ū(p′)γ0u(p)× e

(pǫ∗)

(pk)
. (116)

In a similar way, for the second tree diagram we get

ū(p′)(ie 6ǫ∗)
i

6p′+ 6k −m
× γ0u(p) ≈ ū(p′)γ0u(p)×

−(p′ǫ∗)

(p′k)
, (117)
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and hence for the whole tree amplitude

Mtree(e
−X → e−Xγ) = Mtree(e

−X → e−X)× e

(

(pǫ∗)

(pk)
−

(p′ǫ∗)

(p′k)

)

= Mtree(e
−X → e−X)×

e

ω

(

ǫ∗µ

(

p′µ

(np′)
−

pµ

(np)

)) (118)

where ω = k0 is the photon’s frequency and nµ is the unit 4-vector for its direction, n0 = |n| = 1.

To convert the amplitude (118) into a cross-section, we need to sum |M|2 over photon po-

larizations, sum/average over the electron polarizations, and take care of the phase space factors.

Fortunately, the electron spins work the same with or without the photon, thus

|M|2tree(e
−X → e−Xγ) = |M|2tree(e

−X → e−X)×
e2

ω2

[

−

(

p′

(np′)
−

p

(np)

)2
]

. (119)

and for ω ≪ Ee the electron’s phases-space factors also work the same, with or without the soft

photon. Consequently, the partial cross-sections with or without a soft photon are related to each

other as

dσtree(e
−X → e−Xγ) = dσtree(e

−X → e−X)×
ω2 dω dΩn

(2π)3 2ω
×

e2

ω2

[

−

(

p′

(np′)
−

p

(np)

)2
]

. (120)

Averaging the expression in [· · ·] on the RHS over the directions n of the soft photon, we define

I(p′, p) =

∫

d2Ωn

4π

[

−

(

p′

(np′)
−

p

(np)

)2
]n0=|n|=1

, (121) (6.13)

or as the textbook calls it I(v,v′), since it only depends on the electron’s initial and final velocities

but not its mass. In terms of this I, the cross-section relation (120) becomes

dσtree(eX → eXγ)

dΩe dωγ
=

dσtree(eX → eX)

dΩ
×

α

π
×

I(p′, p)

ωγ
(122) (6.25)

exactly as promised in eq. (103), except the overall coefficients is I(p′, p) instead of 2fIR(q
2).
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To conclude this appendix, we shall now prove that I(p′, p) = 2fIR(q
2), so the overall coefficient

in eq. (103) is indeed correct. Let’s start with the integrand of eq. (121) for the I(p′, p) and expand

the Lorentz square

−

(

p′

(np′)
−

p

(np)

)2

= −
m2

(np)2
−

m2

(np′)2
+

2(pp′) = 2m2 − q2

(np)(np′)
. (123)

Next, we integrate each of these three terms over the directions of the unit 3-vector n. For the

first term, we have

∫

d2Ωn

4π

1

(np)2
=

2π

4π

+1
∫

−1

d cos θ
1

(E − |p| × cos θ)2
=

1

2
×

1

|p|

E+|p|
∫

E−|p|

d(E − |p| × cos θ)

(E − |p| × cos θ)2

=
1

2|p|

(

1

E − |p|
−

1

E + |p|

)

=
1

E2 − |p|2
=

1

m2
.

(124)

Likewise, for the second term
∫

d2Ωn

4π

1

(np′)2
=

1

m2
. (125)

Finally, for the third term we use the Feynman parameter trick:

1

(np)× (np′)
=

1
∫

0

dξ
1

[(1− ξ)× (np) + ξ × (np′)]2
=

1
∫

0

dξ
1

(npξ)2
(126)

where

pµξ = (1− ξ)× pµ + ξ × p′µ. (127)

Consequently,

∫

d2Ωn

4π

1

(np)× (np′)
=

1
∫

0

dξ

∫

d2Ωn

4π

1

(npξ)2
=

1
∫

0

dξ

p2ξ
, (128)

where

p2ξ =
[

(1− ξ)p+ ξp′
]2

= (1− ξ)2 × (p2 = m2) + ξ2 × (p′2 = m2) + ξ(1− ξ)× (2pp′ = 2m2 − q2)

= m2 − ξ(1− ξ)q2.

(129)
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Plugging all these formulae back into eqs. (121) and (123), we arrive at

I(p′, p) = −
m2

m2
−

m2

m2
+ (2m2 − q2)×

1
∫

0

dξ

m2 − ξ(1− ξ)q2
=

1
∫

0

dξ

(

2m2 − q2

m2 − ξ(1− ξ)q2
− 2

)

.

(130)

Finally comparing the last formula with the definition of the fIR,

fIR(q
2/m2

e) =

1
∫

0

dξ

(

2m2
e − q2

2[m2 − ξ(1− ξ)q2]
− 1

)

, (89)

we immediately see that I(p′, p) = 2fIR(q
2/m2

e), quod erat demonstrandum.
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