
MULTIPOLE EXPANSION

Consider the Coulomb potential of some compact charge system,

V (R) =
1

4πǫ0

∫∫∫
d3Vol(r)

ρ(r)

|R− r| . (1)

Suppose all charges are confined inside a small volume of size D while we are interested in

the behavior of the potential at large distances R ≫ D from this charge system. In this

situation, it’s convenient to expand the potential (1) in a series of negative powers of R,

V (R) =
1

4πǫ0

∞∑

ℓ=0

Mℓ(R̂)

Rℓ+1
, (2)

where Mℓ is the ℓ
th multipole moment of the charge system, or rather Mℓ(R̂) is the com-

ponent of this multipole moment in the direction of R.

A point of notation: In this notes, the upper-case R is the distant point where we

measure the potential V (R), R = |R|, R̂ = R/R is the unit vector in the direction of R,

and (R,Θ,Φ) are the spherical coordinates of the R. On the other hand, the lower-case r

is a point where some charge is located; likewise, r = |r|, r̂ = r/r is the unit vector in the

direction of r, and (r, θ, φ) are the spherical coordinates of the r. Finally, α is the angle

between the directions of r̂ and R̂, thus

cosα = r̂ · R̂. (3)

Finally, sometimes I shall use the asterisk ∗ to emphasize the product of two scalars or of a

scalar and a vector.

The key to the expansion (2) is the mathematical theorem: Consider two points with

respective radius vectors R and r. Suppose the second point is closer to the origin than the

first point, r < R. Then the inverse distance between the two points

1

|R− r| =
1√

R2 + r2 − 2Rr cosα
(4)

(where α is the angle between the vectors R and r) can be expanded in powers of the ratio
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r/R as

1

|R− r| =
∞∑

ℓ=0

rℓ

Rℓ+1
× Pℓ(cosα) (5)

where Pℓ(x) is the Legendre polynomial of degree ℓ. Spelling out the first few Legendre

polynomials explicitly, the expansion (5) becomes

1

|R− r| =
1

R
×1 +

r

R2
×cosα +

r2

R3
× 3 cos2 α− 1

2
+

r3

R4
× 5 cos3 α− 3 cosα

2
+ · · · . (6)

The proof of the theorem (5) involves complex contour integration — a technique many

students have not yet learned, — so I present it at as optional reading material in the

Appendix to of these notes.

Meanwhile, let me simply verify the first few terms in the expansion (6) for r ≪ R. For

the sake of compactness, let’s denote

a =
r

R
≪ 1, x = cosα, b = 2ax − a2 ≪ 1.

In these notations,

1√
R2 + r2 − 2Rr cosα

=
1√

R2(1 + a2 − 2ax)
=

1

R
× 1√

1− b
. (7)

Next, let’s expand the 1/
√
1− b into powers of b:

S =
1√
1− b

= 1 +
∞∑

n=1

(2n− 1)!!

2n n!
× bn = 1 + 1

2b + 3
8b

2 + 5
16b

3 + 35
128b

4 + · · · . (8)

Now, remember that b = 2ax−a2, plug that into the above expansion, open up the (· · ·), and
rearrange the terms according to the powers of a. For simplicity, let’s stop with terms ∼ a4
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and truncate the higher powers of a, thus

S = 1 + 1
2(2ax− a2) + 3

8(2ax− a2)2 + 5
16(2ax− a2)3 + 35

128(2ax− a2)4 + · · ·

= 1 + ax − 1
2a

2

+ 3
2a

2x2 − 3
2a

3x + 3
8a

4

+ 5
2a

3x3 − 15
4 a

4x2 + · · ·
+ 35

8 a
4x4 − · · ·

+ · · ·

= 1 + a× x + a2 × 3x2 − 1

2
+ a3 × 5x3 − 3x

2
+ a4 × 35x4 − 30x2 + 3

8
+ · · ·

= 1 + a× P1(x) + a2 × P2(X) + a3 × P3(x) + a4 × P4(x) + · · ·

(9)

where P1(x), P2(x), P3(x) and P4(x) are the Legendre polynomials of respective degrees 1,

2, 3, and 4. Plugging this result back into eq. (7), we obtain

1√
R2 + r2 − 2Rr cosα

=
1

R
+

r

R2
× P1(cosα) +

r2

R3
× P2(cosα)

+
r3

R4
× P3(cosα) +

r4

R5
× P4(cosα) + · · · ,

(10)

in perfect agreement with eq. (6).

Now let’s apply the theorem (5) to the Coulomb potential

V (R) =
1

4πǫ0

∫∫∫
d3Vol(r)

ρ(r)

|R− r| (1)

of a compact charge distribution. Since all the charges are located within a small volume

of size D, we may limit the integration range here to |r| ≤ D, while we are interested in

the potential at large distances |R| ≫ D. Thus, throughout the integration volume we have

|r| ≪ |R|, so we may expand the inverse distance 1/|R − r| into a power series in r/R
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according to eq. (5), thus

V (R) =
1

4πǫ0

∫∫∫
d3Vol(r) ρ(r)×

∞∑

ℓ=0

rℓ

Rℓ+1
× Pℓ(cosα)

=
∞∑

ℓ=0

1

4πǫ0Rℓ+1
×
∫∫∫

d3Vol(r) ρ(r)× rℓPℓ(cosα)

=

∞∑

ℓ=0

1

4πǫ0Rℓ+1
×
∫∫∫

d3Vol(r) ρ(r)× rℓPℓ(r̂ · R̂).

(11)

Or in other words,

V (R) =

∞∑

ℓ=0

Mℓ(R̂)

4πǫ0Rℓ+1
, (12)

exactly as in eq. (2), where the multipole moments of the charge distribution ρ(r) — or

rather their components in the direction R̂ — obtain as integrals

Mℓ(R̂) =

∫∫∫
rℓPℓ(r̂ · R̂)× ρ(r) d3Vol(r). (13)

Or for a system of discrete point charges, as sums

Mℓ(R̂) =
∑

i

rℓi × Pℓ(r̂i · R̂)×Qi . (14)

The R̂-dependence of the multipole moments can be described of ℓ-index tensors, or

alternatively in terms of spherical harmonics Yℓ,m(Θ,Φ). To see how this works — especially

the tensor description, — let’s start with the leading multipole moments for ℓ = 0, 1, 2, 3.
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Monopole and Dipole Moments, ℓ = 0 and ℓ = 1

The multipole moment for ℓ = 0 is simply the net charge of the distribution. Indeed,

P0(x) = 1, hence r0 × P0(r̂ · R̂) = 1× 1 = 1 and therefore

M0 =

∫∫∫
ρ(r) d3Vol(r) = Qnet (15)

regardless of the direction R̂. Consequently, the ℓ = 0 term in the potential is the isotropic

Coulomb potential

Vℓ=0(R) =
Qnet

4πǫ0R
(16)

of a point charge Qnet, that’s why the ℓ = 0 multipole is called the monopole.

Next, the moment for ℓ = 1 is the net dipole moment pnet, or rather its projection

R̂ · pnet onto the direction of R. Indeed, P1(x) = x, hence

r ∗ P1(R̂ · r̂) = r ∗ (R̂ · r̂) = R̂ · r (17)

and therefore

M1(R̂) =

∫∫∫
(R̂ · r)ρ(r) d3Vol(r) = R̂ ·

∫∫∫
r ρ(r) d3Vol(r) = R̂ · pnet. (18)

Consequently, the potential of the ℓ = 1 term is the dipole potential

Vdipole(R) =
pnet · R̂
4πǫ0R2

. (19)

Note: the net charge is a scalar while the net dipole moment is a vector, and both scalars

and vectors are special case of tensors with respectively 0 indices or 1 index.
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Quadrupole Moment for ℓ = 2

The quadrupole moment is a 2-index symmetric tensor

Qi,j =

∫∫∫ (
3
2rirj − 1

2δi,jr
2
)
ρ(r) d3Vol(r) (20)

where the indices i, j run over x, y, z, the ri are the components of the vector r, and δi,j

is the Kronecker’s delta (1 for i = j and 0 for i 6= j). The tensor (20) is symmetric WRT

permutation of its two indices, Qi,j = Qj,i, and the component of this tensor in the direction

R̂ is simply the tensor analogue of the dot product with the unit vector R̂,

M2(R̂) =
∑

i,j=x,y,z

Qi,jR̂iR̂j . (21)

To see how this works, we start with P2(x) =
3
2x

2 − 1
2 , hence

r2 ∗ P2(R̂ · r̂) = 3
2r

2 ∗ (R̂ · r̂)2 − 1
2r

2 = 3
2(R̂ · r)2 − 1

2r
2 ∗ R̂2 (22)

〈〈 R̂ is a unit vector so R̂2 = 1 〉〉,

where

(R̂ · r)2 =
(∑

i

R̂iri

)2
=
(∑

i

R̂iri

)(∑

j

R̂jrj

)
=
∑

i,j

R̂iR̂j rirj , (23)

R̂2 =
∑

i

R̂iR̂i =
∑

i,j

R̂iR̂j δi,j , (24)

and therefore

r2 ∗ P2(R̂ · r̂) = 3
2

∑

i,j

R̂iR̂j rirj − 1
2r

2
∑

i,j

R̂iR̂j δij

=
∑

i,j

R̂iR̂j ∗
(
3
2rirj − 1

2r
2δi,j

)
. (25)
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Plugging this formula into the integral for the ℓ = 2 moment, we get

M2(R̂) =

∫∫∫
r2 ∗ P2(R̂ · r̂) ∗ ρ(r) d3Vol(r)

=

∫∫∫ ∑

i,j

R̂iR̂j ∗
(
3
2rirj − 1

2r
2δi,j

)
∗ ρ(r) d3Vol(r)

=
∑

i,j

R̂iR̂j ∗
∫∫∫ (

3
2rirj − 1

2r
2δi,j

)
∗ ρ(r) d3Vol(r)

=
∑

i,j

R̂iR̂j ∗ Qi,j

(26)

where the quadrupole moment tensor Qi,j is exactly as in eq. (20). In terms of this tensor,

the quadrupole potential is

Vquadrupole(R) =

∑
i,j Qi,jR̂iR̂j

4πǫ0R3
. (27)

Example 1.

A good example of a quadrupole moment tensor is a simple quadrupole — for alternating

charges ±Q at the corners of a square, hence the name quadrupole,

x

y

+Q @(0, 0, 0),

−Q @(a, 0, 0),

−Q @(0, a, 0),

+Q @(a, a, 0).

(28)

It is easy to see that this 4-charge system has zero net charge as well as zero net dipole

moment, so the leading term in its potential at long distances is the quadrupole potential (27).

Let’s calculate the quadrupole moment tensor

Qi,j =
4∑

a=1

Qα

(
3
2ra,ira,j − 1

2r
2
aδi,j

)
(29)

of this simple quadrupole. In matrix notations,

Q1

(
3
2rirj − 1

2r
2δi,j

)
1

= +Q




0 0 0

0 0 0

0 0 0


 , (30)
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Q2

(
3
2rirj − 1

2r
2δi,j

)
2

= −Q


3

2




a2 0 0

0 0 0

0 0 0


 − a2

2




1 0 0

0 1 0

0 0 1






= −Qa
2

2




+2 0 0

0 −1 0

0 0 −1


 , (31)

Q3

(
3
2rirj − 1

2r
2δi,j

)
3

= −Q


3

2




0 0 0

0 a2 0

0 0 0


 − a2

2




1 0 0

0 1 0

0 0 1






= −Qa
2

2




−1 0 0

0 +2 0

0 0 −1


 , (32)

Q4

(
3
2rirj − 1

2r
2δi,j

)
4

= +Q


3

2




a2 a2 0

a2 a2 0

0 0 0


 − 2a2

2




1 0 0

0 1 0

0 0 1






= +
Qa2

2




+1 +3 0

+3 +1 0

0 0 −2


 , (33)

and therefore

Qi,j =
Qa2

2




0 3 0

3 0 0

0 0 0


 . (34)

For this quadrupole moment tensor

M2(R̂) =
∑

i,j

R̂iR̂jQi,j = 3Qa2 × R̂xR̂y = 3Qa2 × sin2ΘcosΦ sinΦ, (35)

hence the quadrupole potential

V (R, θ, φ) =
3Qa2

4πǫ0
∗ sin2ΘcosΦ sin Φ

R3
=

3Qa2

4πǫ0
∗ XY
R5

. (36)
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Example 2.

Another good example of a quadrupole moment is a linear quadrupole: a charge −2Q in

the middle, and two charges +Q at its opposite sides (and at exactly the same distance a):

+Q +Q−2Q
z

Again, this charge system has zero net charge and zero net dipole moment, so the leading

term in the multipole expansion of its potential is the quadrupole term ℓ = 2, but this time

the quadrupole moment tensor

Qi,j =
3∑

a=1

Qa

(
3
2ra,ira,j − 1

2r
2
aδi,j

)
(37)

has a different form. Indeed, for the charges at hand

∑

α

Qara,ira,j = 2Q




0 0 0

0 0 0

0 0 a2


 (38)

while
∑

Qar
2
a = 2Qa2, (39)

hence

Qi,j = Qa2




−1 0 0

0 −1 0

0 0 +2


 . (40)

For this quadrupole moment,

M2(R̂) = Qa2
(
−R̂2

x − R̂2
y + 2R̂2

z

)
= Qa2(2 cos2Θ− sin2Θ)

= Qa2(3 cos2Θ− 1) = 2Qa2 ∗ P2(cosΘ),
(41)

and the quadrupole potential is

Vquadrupole =
2Qa2

4πǫ0
∗ P2(cosΘ)

R3
. (42)
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Tracelessness.

In both of the above examples, the matrices of the quadrupole moment tensors (34) and

(40) have zero traces,

tr(Q)
def
=

∑

i=x,y,z

Qi,i = 0. (43)

Actually, this is a general property of the quadrupole moment tensor of any system. Indeed,

by definition of the quadrupole moment tensor,

Qi,j
def
=

∫∫∫ (
3
2rirj − 1

2r
2δi,j

)
ρ(r) d3Vol(r), (20)

its trace is

tr(Q) =
∑

i=x,y,z

∫∫∫ (
3
2riri − 1

2r
2δi,i

)
ρ(r) d3Vol(r)

=

∫∫∫ ∑

i

(
3
2riri − 1

2r
2δi,i

)
× ρ(r) d3Vol(r)

(44)

where
∑

i

riri = r2,
∑

i

δi,i =
∑

i

1 = 3, (45)

hence
∑

i

(
3
2riri − 1

2r
2δi,i

)
= 3

2 × r2 − 1
2r

2 × 3 = 0 (46)

and therefore tr(Q) = 0.

Consequently, out of 33 = 9 components of the 2-index quadrupole moment tensor, only

5 components are linearly independent: The symmetry Qi,j = Qj,i of the tensor imposes

3 linear relations between the components, and the zero trace condition is another linear

constraint, so only 9− 3− 1 = 5 components are linearly independent.
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Octupole Moment for ℓ = 3

For ℓ = 3 we have P3(x) =
5
2x

3 − 3
2x, hence

r3 ∗ P3(R̂ · r̂) = 5
2(R̂ · r)3 − 3

2R̂
2 r2 (R̂ · r)

〈〈 after a bit of algebra 〉〉

=
∑

i,j,k=x,y,z

R̂iR̂jR̂k ×
(
5
2rirjrk − 1

2r
2
(
riδj,k + rjδi,k + rkδi,j

)) (47)

and therefore

M3(R̂) =

∫∫∫
r3P3(r̂ · R̂) ρ(r) d3Vol(r)

=
∑

i,j,k=x,y,z

R̂iR̂jR̂k ×Oi,j,k

(48)

where

Oi,j,k
def
=

∫∫∫ (
5
2rirjrk − 1

2r
2
(
riδj,k + rjδi,k + rkδi,j

))
ρ(r) d3Vol(r) (49)

are components of the 3-index octupole moment tensor. In terms of this tensor, the ℓ = 3

term in the multipole expansion of the potential at large distances amounts to

Vℓ=3(R) =

∑
i,j,k R̂iR̂jR̂k ×Oi,j,k

4πǫ0R4
. (50)

By construction, the octupole moment is a totally symmetric 3-index tensor,

Oany permutation of i,j,k = Oi,j,k . (51)

Less obviously, it obeys a generalized zero-trace condition

∑

i=x,y,z,

Oi,i,k = 0 for any k = x, y, z. (52)

Consequently, out of 33 = 27 components of the octupole moment tensor, only 7 are linearly

independent.
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Examples.

A good example of an octupole moment is made from 8 alternating charges ±Q— hence

the name octupole — at the vertices of a cube:

(53)

For this cube,

Oi,j,k
def
=
∑

a

Qa

(
5
2rirjrk − 1

2r
2
(
riδj,k + rjδi,k + rkδi,j

))
a

(54)

evaluates to

Oi,j,k =

{
5
2Qa

3 for (i, j, k) = (x, y, z) in some order,

0 otherwise,
(55)

hence

∑

i,j,k

R̂iR̂jR̂k ×Oi,j,k =
5Qa3

2
× 6XY Z

R3
(56)

and therefore octupole potential

Voctupole =
15Qa3

4πǫ0
∗ XY Z

R7
. (57)

Another example of the octupole moment is the linear octupole — 4 equidistant charges

−Q, +3Q, −3Q, +Q arranged in a line, say the z axis:

z

−Q +3Q −3Q +Q
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For this system, the octupole moment tensor evaluates to

Qz,z,z = +6Qa3,

Q(x,x,z) = −3Qa3,

Q(y,y,z) = −3Qa3,

all other Qi,j,k = 0.

(58)

Consequently,

∑

i,j,k

R̂iR̂jR̂k ×Oi,j,k = 6Qa3 × Z3

R3
− 3Qa3 × X2Z + Y 2Z

R3
× 3

= 3Qa3 ×
(
2 cos3Θ − 3 cosΘ sin2Θ

)

= 3Qa3 ×
(
5 cos3Θ − 3 cosΘ

)

= 6Qa3 × P3(cosΘ),

(59)

and the octupole potential

Voctupole(R, θ, φ) =
6Qa3

4πǫ0
∗ P3(cos θ)

R4
. (60)

Higher Multipole Moments

We saw that for ℓ = 0, 1, 2, 3, the ℓth term in the multipole expansion is related to an

ℓ-index tensor — called the 2ℓ-pole moment M(ℓ)
ii,...,iℓ

as

Mℓ(R̂) =
∑

ii,...,iℓ

R̂i1 · · · R̂iℓ ×M(ℓ)
ii,...,iℓ

,

hence

Vℓ(R) =

∑
ii,...,iℓ

R̂i1 · · · R̂iℓ ×M(ℓ)
ii,...,iℓ

4πǫ0Rℓ+1
. (61)

Also, the 2ℓ-pole moment tensor itself obtains as an integral (or a sum over discrete charges)

M(ℓ)
ii,...,iℓ

=

∫∫∫
F

(ℓ)
ii,...,iℓ

(x, y, z)× ρ(x, y, z) d3Vol(x, y, z) (62)
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or a similar sum over discrete charges

M(ℓ)
ii,...,iℓ

=
∑

a

Qa × F
(ℓ)
ii,...,iℓ

(xa, ya, za) (63)

where each component of the F
(ℓ)
ii,...,iℓ

(x, y, z) is a homogeneous polynomial of degree ℓ in

(x, y, z). Specifically,

F (0)(x, y, z) = 1,

F
(1)
i (x, y, z) = ri ,

F
(2)
i,j (x, y, z) = 3

2rirj − 1
2r

2δi,j ,

F
(3)
i,j,k

(x, y, z) = 5
2rirjrk − 1

2r
2
(
riδj,k + rjδi,k + rkδi,j

)
.

(64)

At the higher ℓ > 3 levels of the multipole expansion, we get exactly the same behavior for

the higher-rank 2ℓ-pole moment tensors with ℓ indices: Specifically,

Vℓ(R) =

∑
ii,...,iℓ

R̂i1 · · · R̂iℓ ×M(ℓ)
ii,...,iℓ

4πǫ0Rℓ+1
(61)

for

M(ℓ)
ii,...,iℓ

=

∫∫∫
F

(ℓ)
ii,...,iℓ

(x, y, z)× ρ(x, y, z) d3Vol (62)

or

M(ℓ)
ii,...,iℓ

=
∑

a

Qa × F
(ℓ)
ii,...,iℓ

(xa, ya, za), (63)

only the polynomials F
(ℓ)
ii,...,iℓ

(x, y, z) become more complicated for higher ℓ. But fortunately,

we are not going to need their explicit form in this class.

Instead, let me simply state that for any ℓ, the 2ℓ-pole moment tensor M(ℓ)
ii,...,iℓ

is totally

symmetric WRT to all permutations of its ℓ indices i1, . . . , il. Also, for any ℓ ≥ 2, it obeys

the generalized zero-trace condition:

∀i3, . . . , iℓ :
∑

i1=x,y,z

M(ℓ)
i1,i2=i1,i3,...,iℓ

= 0. (65)

Consequently, out of 3ℓ components of the 2ℓ-pole moment tensor, only 2ℓ + 1 components

are linearly independent. The rest of the components follow from these by the permutation
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symmetries of the tensor’s indices and by the zero-trace conditions (65). Note that 2ℓ+ 1 is

also the number of independent spherical harmonics Yℓ,m(θ, φ) for a given ℓ, and this is no

coincidence. Instead, this allows us to re-express the angular dependence of all the 2ℓ-pole

terms in the potential in terms of the spherical harmonics, as we shall see in the next section.

Spherical Harmonic Expansion

Instead of describing the angular dependence of the multipoles’ components in the direc-

tion R̂ in terms of symmetric multipole tensors, we may expand it in terms of spherical har-

monics. The key to this expansion is the following Lemma: for any integer ℓ = 0, 1, 2, 3, . . .

and any two unit vectors â and b̂, the Legendre polynomial of their dot product (i.e., of

the cosine of the angle between these vectors) expands into products of spherical harmonics

according to

Pℓ(â · b̂) =
4π

2ℓ+ 1

+ℓ∑

m=−ℓ

Yℓ,m(â)Y
∗
ℓ,m(b̂). (66)

Proving this lemma is best done in the quantum-mechanical language of Dirac brackets and

projection operators. Since some students may be unfamiliar with this language, the proof

is postponed to the Appendix to these notes as optional reading.

Meanwhile, let’s apply the Lemma to the vectors R̂ and r̂ in the context of eq. (13):

Mℓ(R̂) =

∫∫∫
rℓ × Pℓ(R̂ · r̂)× ρ(r) d3Vol(r)

=

∫∫∫
rℓ × 4π

2ℓ+ 1

(
+ℓ∑

m=−ℓ

Yℓ,m(R̂)Y ∗
ℓ,m(r̂)

)
× ρ(r) d3Vol(r)

=
4π

2ℓ+ 1

+ℓ∑

m=−ℓ

Yℓ,m(R̂)×
∫∫∫

rℓ × Y ∗
ℓ,m(r̂)× ρ(r) d3Vol.

(67)

Hence, let’s define the spherical harmonics of multipoles according to

Mℓ,m
def
=

√
4π

2ℓ+ 1

∫∫∫
rℓ × Y ∗

ℓ,m(θ, φ)× ρ(r, θ, φ) d3Vol(r, θ, φ). (68)

Then, the 2ℓ–pole potential has form

V2ℓ−pole(R,Θ,Φ) =
1

4πǫ0

+ℓ∑

m=−ℓ

Mℓ,m ×
√

4π

2ℓ+ 1

Yℓ,m(Θ,Φ)

Rℓ+1
(69)
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and the entire potential expands into

Vnet(R,Θ,Φ) =
1

4πǫ0

∞∑

ℓ=0

+ℓ∑

m=−ℓ

Mℓ,m ×
√

4π

2ℓ+ 1

Yℓ,m(Θ,Φ)

Rℓ+1
. (70)

Axial Symmetry

For the axially symmetric charge distributions ρ(r, θ, φ) = ρ(r, θ only), expanding the

electric multipoles into spherical harmonics becomes particularly simple: for each ℓ, only the

m = 0 harmonic may have a non-zero coefficient Mℓ,0 6= 0; all the other Mℓ,m with m 6= 0

must vanish. Indeed, for the axially symmetric charges, the integral (68) becomes

Mℓ,m =

√
4π

2ℓ+ 1

∞∫

0

dr r2 ×
π∫

0

dθ sin θ × rℓρ(r, θ)×
2π∫

0

dφ Y ∗
ℓ,m(θ, φ), (71)

and since Yℓ,m(θ, φ) = eimφ × a function of θ, the φ integral vanishes for m 6= 0,

2π∫

0

dφ Y ∗
ℓ,m(θ, φ) = 0 for m 6= 0. (72)

For the remaining m = 0 components, the spherical harmonics Yℓ,0(θ, φ) are proportional

to the Legendre polynomials,

√
4π

2ℓ+ 1
× Yℓ,0(θ, φ) = Pℓ(cos θ), (73)

so the multipole expansion (70) becomes

Vnet(R,Θ,6Φ) =
1

4πǫ0

∞∑

ℓ=0

M(ℓ)
axial ×

Pℓ(cosΘ)

Rℓ+1
(74)

where

M(ℓ)
axial

def
= Mℓ,0 =

√
4π

2ℓ+ 1

∫∫∫
rℓY ∗

ℓ,0(θ)ρ(r, θ) d
3Vol

=

∫∫∫
rℓPℓ(cos θ)× ρ(r, θ) d3Vol(r, θ, φ).

(75)
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In terms of the multipole moment tensors M(ℓ)
i1,...,iℓ

,

M(ℓ)
axial = M(ℓ)

z,...,z . (76)

For example, for a simple dipole, a linear quadrupole, and a linear octupole — which all

have axial symmetries —

M
(1)
axial = pz = Qa, (77)

Vdipole(R,Θ) =
Qa

4πǫ0

P1(cosΘ)

R2
, (78)

M
(2)
axial = Qz,z = 2Qa2, (79)

Vlin.quadrupole(R,Θ) =
2Qa2

4πǫ0

P2(cosΘ)

R3
, (80)

M
(3)
axial = Oz,z,z = 6Qa3, (81)

Vlin.octupole(R,Θ) =
6Qa3

4πǫ0

P3(cosΘ)

R3
, (82)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

And you will see more examples in your homework (set#7).

Appendix: Proving the Theorems

In this Appendix I shall prove the theorem (5) and the lemma (66). This proof is

optional reading for the students in my ElectroDynamics class, as it involves complex analysis

techniques (for the theorem (5)) or quantum-mechanical techniques (for the lemma (66)) that

many students have not yet learned. But please, learn both complex analysis and quantum

mechanics before your graduate: All physicists should be familiar with these subjects, just

as they should be familiar with the electrodynamics.
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Proving the Theorem About Inverse Distance Expansion

Let’s start by proving the theorem (5) about expanding the inverse distance 1/|R − r|
into powers of r/R. That is, let’s prove that the series on the LHS of

∞∑

ℓ=0

rℓ

Rℓ+1
× Pℓ(cosα) =

1√
R2 − 2Rr cosα + r2

=
1

|R− r| . (83)

converges for any r < R and that the sum is precisely the expression on the RHS. The key

here is the residue method for evaluating contour integrals in the complex plane:

∮

Γ

dz

2πi

f(z)

(z − x)n+1
= Residue

[
f(z)

(z − x)n+1

]

@z=x

=
1

n!

dnf(z)

dzn

∣∣∣∣
@z=x

(84)

provided the contour Γ circles x and that the function f(x) is analytic and has no singularities

inside the contour Γ.

My starting point is the Rodriguez formula for the Legendre polynomials,

Pℓ(x) =
1

2ℓ ℓ!

dℓ

dxℓ
(x2 − 1)ℓ. (85)

In light of the residue-method formula (84), we may turn the ℓth derivative in this formula

into a complex contour integral

Pℓ(x) =
1

2ℓ

∮

Γ

dz

2πi

(z2 − 1)ℓ

(z − x)ℓ+1
(86)

where Γ is some closed contour which circles x. Now let’s plug this formula into the series
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on the LHS of eq. (83):

series =

∞∑

ℓ=0

rℓ

Rℓ+1
× Pℓ(x)

=

∞∑

ℓ=0

rℓ

Rℓ+1
× 1

2ℓ

∮

Γ

dz

2πi

(z2 − 1)ℓ

(z − x)ℓ+1

〈〈 putting the sum inside the integral 〉〉

=

∮

Γ

dz

2πi

∞∑

ℓ=0

rℓ

Rℓ+1
× (z2 − 1)ℓ

2ℓ(z − x)ℓ+1

=

∮

Γ

dz

2πi

1

R(z − x)
×

∞∑

ℓ=0

(
r(z2 − 1)

2R(z − t)

)ℓ

=

∮

Γ

dz

2πi

1

R(z − x)
× 1

1− r(z2−1)
2R(z−x)

=

∮

Γ

dz

2πi

−2

rz2 − 2Rz + 2Rx − r
.

(87)

Note: before the summation, each term on the third line has poles at z = x and at z = ∞,

but after the summation, both poles have moved to the roots of the quadratic equation

rz2 − 2Rz + 2Rx − r = 0, (88)

thus

z1,2 =
R±

√
R2 − 2rRx+ r2

r
; for r ≪ R, z1 ≈ 2R

r
→ ∞, while z2 ≈ x. (89)

This tells us how to choose the integration contour Γ: It should circle around x and have

enough room to accommodate the shifting of the pole from x to z2, but it should not include

the other pole at z1 which have moved in from the infinity. Consequently, evaluating the

integral on the bottom line of eq. (87) by the residue method, we have

∮

Γ

dz

2πi

−2

rz2 − 2Rz + 2Rx − r
= Residue

[ −2

rz2 − 2Rz + 2Rx − r

]

@z=z2

. (90)
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Specifically,

−2

rz2 − 2Rz + 2Rx − r
=

−2

r
× 1

(z − z1)(z − z2)
, (91)

so the residue of this function at z = z2 is simply

Residue =
−2

r
× 1

z2 − z1
=

−2

r
× r

−2
√
R2 − 2rRx+ r2

= +
1√

R2 − 2rRx+ r2
. (92)

Thus,

the series =

∞∑

ℓ=0

rℓ

Rℓ+1
× Pℓ(x) =

1√
R2 − 2rRx+ r2

, (93)

exactly as on the RHS of eq. (83).

To complete the proof, consider the convergence of the multipole expansion (83). For

any physical angle α ranging between 0 and π, the x = cosα ranges between +1 and −1,

and for all such x, all the Legendre polynomials Pℓ(x) take values between −1 and +1.

Consequently,
∣∣∣∣

ℓth term in the

multipole expansion

∣∣∣∣ <
rℓ

Rℓ+1
=

(r/R)ℓ

R
, (94)

so the series on the LHS of eq. (83) converges for any r < R.

Moreover, if we analytically continue the series to complex r, it would converge for all

|r| < R; in other words, it has radius of convergence = R. Indeed, as a function of complex

r, the 1/
√· · · on the RHS of (83) has singularities at

r1,2 = R cosα ± iR sinα, |r1,2| = R,

and that’s what sets the radius of convergence to |r| < R.

For r > R we may no longer expand the inverse distance into powers of r/R. Instead,

we may expand it into powers of the inverse ratio R/r:

For r > R,
1√

R2 + r2 − 2Rr cosα
=

∞∑

ℓ=0

Rℓ

rℓ+1
× Pℓ(cosα), (95)

which works exactly like eq. (5) once we exchange r ↔ R.

20



Physically, the expansion (5) is useful for potentials far outside complicated charged

bodies, while the inverse expansion (95) is useful for potentials deep inside a cavity.

Proving the Lemma About Spherical Harmonics

Now let’s prove the lemma (66): for any ℓ = 0, 1, 2, 3, . . .,

+ℓ∑

m=−ℓ

Yℓ,m(θa, φa)Y
∗
ℓ,m(θb, φb) =

2ℓ+ 1

4π
× Pℓ(cosΘab) (96)

where Θab is the angle between the directions (θa, φa) and (θb, φb).
⋆
I am going to prove this

lemma in two steps: First, I shall prove that the sum on the LHS here depends only on the

relative angle Θab but remains invariant under simultaneous rotations of both directions.

Second, I shall use this invariance to evaluate the sum and show that it agrees with the

Legendre polynomial on the RHS.

The first step is best described in the quantum mechanical language of Dirac brackets

and operators. Specifically, consider a quantum particle living in 2 curved dimensions,

specifically on a sphere of some fixed radius r = const. The position (a) of such a particle

can be described by two spherical angles (θa, φa), or equivalently by a unit vector a pointing

towards the particle from the sphere’s center. Consequently, the quantum states of such a

particle are described by wave-functions ψ(a) = ψ(θa, φa).

Now consider the Hilbert space of such wave-functions. The spherical harmonics provide

a complete orthonormal basis for this Hilbert space:

any ψ(θ, φ) =
∞∑

ℓ=0

+ℓ∑

m=−ℓ

〈ℓ,m|ψ〉 × Yℓ,m(θ, φ)

for 〈ℓ,m|ψ〉 =

∫∫
Y ∗
ℓ,m(θ, φ)ψ(θ, φ) d

2Ω(θ, φ).

(97)

Physically, the states |ℓ,m〉 are eigenstates of the angular momentum operators L̂2 and L̂z ,

L̂z |ℓ,m〉 = h̄m |ℓ,m〉 , L̂2 |ℓ,m〉 = h̄2ℓ(ℓ+ 1) |ℓ,m〉 . (98)

⋆ In the context of the multipole expansion, (θa, φb) = (Θ,Φ), (θb, φb) = (θ, φ), and Θab = α, the angle

between R̂ and r̂.
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Consequently, the operators

Π̂ℓ =
+ℓ∑

m=−ℓ

|ℓ,m〉 〈ℓ,m| (99)

are projector operators onto all states with a specific value of L2, namely h̄2ℓ(ℓ+ 1).

Since the L̂2 operator is invariant under all 3D rotations of the sphere about its center,

the projection operators Π̂ℓ must also be invariant under rotations. Consequently, for any

two definite-positions states |a〉 = |θa, φa〉 and |b〉 = |θb, φb〉, the Dirac sandwich

〈a| Π̂ℓ |b〉 (100)

must be invariant under simultaneous rotations of the unit vectors a and b. Therefore, this

Dirac sandwich may depend only on the relative angle Θab between the unit vectors a and

b, but it cannot depend on where the vectors a and b point in absolute terms, thus

〈a| Π̂ℓ |b〉 = Fℓ(Θab only). (101)

On the other hand, by construction of the operator (99),

〈a| Π̂ℓ |b〉 =
+ℓ∑

m=−ℓ

〈a|ℓ,m〉 〈ℓ,m|b〉 =
+ℓ∑

m=−ℓ

Yℓ,m(θa, φa)× Y ∗
ℓ,m(θb, φb), (102)

hence

+ℓ∑

m=−ℓ

Yℓ,m(θa, φa)× Y ∗
ℓ,m(θb, φb) = Fℓ(Θab only). (103)

This completes the first step of the proof.

The second step is to find the specific form of the functions Fℓ(Θab). To do that, let’s

evaluate the sums (103) for a particularly simple choice of point b, namely the North pole

of the sphere, θb = 0, φb undefined. Meanwhile, the point a can be anywhere on the sphere.

For our choice of point b, the angle between the vectors a and b is simply the latitude of a,
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Θab = θa, so we may evaluate the Fℓ(Θab) as

Fℓ(Θab = θa) =

+ℓ∑

m=−ℓ

Yℓ,m(θa, φa)Y
∗
ℓ,m(θb = 0). (104)

The spherical harmonics Yℓ,m(θ, φ) have general form

Yℓ,m(θ, φ) = eimφ ×
(
sin θ

)|m| × Polynomial(cos θ), (105)

so thanks to the (sin θ)|m| factor, all the harmonics with m 6= 0 vanish at the poles. Conse-

quently, only the ℓ = 0 term contributes to the sum (104), thus

F (Θab = θa) = Yℓ,0(θa)× Y ∗
ℓ,0(θb = 0) =

2ℓ+ 1

4π
× Pℓ(cos θa)× Pℓ(1) (106)

where the second equality follows from the relation (73) of the Yℓ,0 harmonics to the Legendre

polynomials. Moreover, the Legendre polynomials are normalized so that Pℓ(1) = 1 for all

ℓ, hence

F (Θab = θa) =
2ℓ+ 1

4π
× Pℓ(cos θa). (107)

This completes the second step of the proof.

Altogether, we have

+ℓ∑

m=−ℓ

Yℓ,m(θa, φa)× Y ∗
ℓ,m(θb, φb) =

2ℓ+ 1

4π
× Pℓ(cosΘab), (108)

quod erat demonstrandum.
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