Imaging Maya Pyramids with Cosmic Ray Muons

An Application of the Tools of High Energy Physics

The Maya: Extraordinary American Culture

Some Background

- 1839-ff: John Lloyd Stephens with Frederick Catherwood, artist
 - Incidents of Travel in Central America, Chiapas, and Yucatan (1841)
 - Incidents of Travel in Yucatan (1843)
- Linda Schele (1942 1998) UT Austin
 - The Code of Kings (1998) with Peter Mathews

What is the internal structure?

Measure Spatial Distribution of Material *Inside* by Muon Tomography

This is Proven Technology

- Luis Alvarez* invented muon tomography in 1960's to study the 2nd Pyramid of Chephren
- Spark chambers used to track muons from Belzoni Chamber
- System worked well—could see structures of caps
- Main discovery: No other chambers exist

* L.W. Alvarez, et al, Search for Hidden Chambers in the Pyramids Using Cosmic Rays, Science 167, 832-839, 1970.

Cosmic Rays

- Very high energy "primary" cosmic rays - typically protons - interact in upper atmosphere
- Shower of unstable subnuclear particles created: typically pions, kaons
- Muons and neutrinos are decay products of pions and kaons

Muon Interactions in Matter

Energy loss: predominately by ionization

$$\frac{dE}{dx} \approx 2.3 \text{ MeV/gm/cm}^2 \approx 0.6 \text{ GeV/m}$$
 in rock

Multiple-Coulomb Scattering

$$\delta\theta \approx \frac{13.6 \text{ MeV}}{\sqrt{E_i E_f}} \sqrt{\frac{L}{X_0}}$$

 $E_i - E_f \approx L \frac{dE}{dx}$

Arrangement Involving Cylindrical Detectors

- Use 2 or more detectors
 - Compensates for "blind cone" inherent in cylindrical detectors
 - Improved stereo sampling of target volume
 - Symmetry of cylindrical detectors good for measuring "average" image
- Minimizes excavation

Detectors

- Cylindrical structure
 - 1.5 m diameter
 - 4.5 m long
- Muon tracking
 - 3 stereo layers
 - WLS-scintillator technology
 - PMT readout
- Threshold energy selection
 - Use inner volume as a Cherenkov radiator
 - PMT readout
- Other systems
 - Electronics
 - Mechanical
 - Power/communications

Frame

Tracking System Elements

"MINOS" scintillator 30 mm wide 10 mm thick

WLS fiber readout

2 helical layers 1 axial layer (center)

441 total strips

Scintillator Installation

丣

Detector Electronics Systems

- Data from detector
 - Tracking: 2X448 "hit" bits
 - Cherenkov: Analog out
- > Trigger
 - Based on tracking information only
 - Programmable logic
- > DAQ
 - All tracking bits
 - Cherenkov hits above pedestal
- Control
 - Trigger/DAQ control
 - Monitor all detector systems

Trigger Requirements

- Use only tracking information
- ➢ Require:
 - >/= 2 Hit "Triplets"
 - Chord $c > c_{\min}$
 - Direction ?
- Flexible definition of Triplet
 - Coincidence gate: 25–50 ns
 - Number/pattern of hits to balance:
 - Noise singles rates
 - Inefficiencies
- > Typical rates:
 - True events ~ 100 Hz
 - CR singles:
 - ~ 4 KHz full detector
 - ~ 25 Hz per strip

Imaging

- Have begun studies of imaging with a single detector
 - Stereo pairs of spherical projections
 - Radon transformations
- Collaboration expected with UT CS experts
- Extensive sets of tools available:
 - MATLAB
 - LabVIEW

Simulated tunnel 20m distant in one week of running

This is Also Real

Detector is complete and works!

Singles rates on all strips <100 Hz

Consistent with cosmic rays and light-leaks in test setup FEBs are all installed and working—no surprises

Currently focused on DAQ and triggering firmware

People & Things

UT Physics

- Jared Bennatt, Mark Cartwright
- Brian Drell, JJ Hermes
- Becket Hui, Jeremy Johnson
- K. Krishnakumar, Nicholas Raspino
- Cesar Rodriquez, Anandi Salinas
- Mark Selover, Derrick Tucker
- Brad Wray, Eric Wright
- H. Adam Stevens
- Austin Gleeson, RFS
- ➢ UT Electrical & Computer Eng.
 - Bill Bard, Lizy John
 - Carlos Villarreal
 - Elizabeth Van Ruitenbeek
 - Daniel Garcia, Nakul Narayan
 - National Instruments
 - Hugo Andrade, Joe Peck

- Fermilab—Scintillator Production
 - Anna Pla-Dalmau
- Harvard HEPL—Front-end Electronics
 - John Oliver, Sarah Harder
- Other physicists who contributed in the early stages
 - Prof. Rich Muller, UC Berkeley
 - Dr. Dick Mischke, LANL
- UT Mesoamerican
 Archaeological Research
 Laboratory (MARL)
 - Prof. Fred Valdez, Director

UT Mesoamerican Archaeological Research Laboratory

Potential Target Structure

- La Milpa site has relatively good access/infrastructure
- Developing simulation tools to optimize detector design and placement
- Plan excavations for deployment

Other Potential Applications

- Muon Tomography is good for monitoring large underground volumes (~100 m)³, provided:
 - You are interested in structures of scale 1 m 10 m
 - You can afford to wait for weeks to months to acquire the data
 - The volume of interest is between your detector and the surface
- Geological studies of aquifers
 - Shapes of underground cavities
 - Time-dependence of water levels
- Monitoring of geology surrounding underground sites, e.g. underground nuclear waste storage

Summary

> Muon tomography is feasible

- Proven in Alvarez experiment
- New technologies enable simplified detector design
- WLS/scintillator tracking well-developed/good match
- Cherenkov threshold detector is indicated
 - New approach to problem of low-energy multiple-scattering
 - Well-understood physics/technology
 - Simplifies system design
- Excellent project for engaging students
- Other applications are possible
- > Maybe we can help to learn more about the Maya!

