P10.W Diffraction

Please Show All Work!

1. Determine the wavelength of monochromatic light that produces an order \(m = 1 \) fringe pattern on the screen, at \(\theta = 25^\circ \), when it is incident upon a diffraction grating of 5200 lines/cm.

2. Place all the letters that apply next to the expressions relating the single slit width, \(a \), and the wavelength of the light incident on the slit, \(\lambda \).

 a. \(a << \lambda \)
 b. \(a \sim \lambda \)
 c. \(a >> \lambda \)

 a. The ray approximation is no longer valid (light is also wave like).
 b. The primary effect of the opening is to act like a point source of waves.
 c. The primary effect of the opening is minimal; light travels in a straight line through it.
 d. The primary effect of the opening is to diffract the light.

3. Explain, in one sentence, how diffraction affects the multiple-slit patterns. Sketch (with some accuracy, i.e. use straight axes, note the scale correspondence of the two sketches) the intensity patterns as a function of \(\sin \theta \), where \(\theta \) is the angle of incidence, for a two-slit and a three-slit experiment. Consider \(a \sim \lambda \).