
Introduction to VPython and 3D Computer Modeling

OBJECTIVES
In this course you will construct computer models to:

• Visualize motion in 3D
• Visualize vector quantities like position, momentum, and force in 3D
• Do calculations based on fundamental principles to predict the motion of interacting objects
• Animate the predicted motions in 3D

To do this you will use a 3D programming environment called VPython.

In this lab you will learn:

• How to use VIDLE, the interactive editor for VPython
• How to structure a simple computer program
• How to create 3D objects such as spheres and arrows
• How to use vectors in VPython

TIME
You should finish this model and reflection assignment in 50 minutes.

GROUP ROLES
Before you begin, you should agree on the responsibilities of the Coder and Assistants. The Coder will type the
actual lines of code while the Assistants will read the instructions and convey them to the group.

OVERVIEW OF A COMPUTER PROGRAM
A computer program consists of a sequence of instructions.
The computer carries out the instructions one by one, in the order in which they appear, and stops when it
reaches the end.
Each instruction must be entered exactly correctly (as if it were an instruction to your calculator).
If the computer encounters an error in an instruction (such as a typing error), it will stop running and print a red
error message.

A typical program has four sections:

• Setup statments
• Definitions of constants
• Creation of objects
• Calculations to predict motion or move objects (these may be repeated)

I. Using VIDLE to create a program
Find an icon called “VIDLE for VPython”. Double click the VIDLE icon. This starts VIDLE, which is the
editing environment for VPython.

1. Starting a program: Setup statements
Enter the following two statements in the VIDLE editor window:

from _ _future_ _ import division
from visual import *

Every VPython program begins with these setup statements.
The first statement (from space underscore underscore future underscore underscore space import space
division) tells the Python language to treat 1/2 as 0.5. Without the first statement, the Python programming
language does integer division with truncation and 1/2 is zero!
The second statement tells the program to use the 3D module (called “visual”).

Before we write any more, let’s save the program:
• In the VIDLE editor, from the “File” menu, select “Save.” Browse to a location where you can save the

file, and give it the name “Model1.py”. YOU MUST TYPE the “.py” file extension --VIDLE will NOT
automatically add it. Without the “.py” file extension VIDLE won’t colorize your program statements
in a helpful way.

2. Creating an object
In the next section of your program you will create 3D objects:

• Now tell VPython to make a sphere. On the next line, type:

sphere()
This statement tells the computer to create a sphere object. Run the program by pressing F5 on the keyboard.
Two new windows appear in addition to the editing window. One of them is the 3-D graphics window, which
should now contain a sphere.

3. The 3-D graphics scene
By default the sphere is at the center of the scene, and the “camera” (that is, your point of view) is looking
directly at the center.
• Hold down both buttons and move the mouse up and down to make the camera move closer or farther

away from the center of the scene. (This may differ on Macintosh or Linux machines.)
• Hold down the right mouse button alone and move the mouse to make the camera “revolve” around

the scene, while always looking at the center. (This may differ on Macintosh or Linux machines.)

When you first run the program, the coordinate system has the positive x direction to the right, the positive y
direction pointing up, and the positive z direction coming out of the screen toward you. You can then rotate the
camera view to make these axes point in other directions.

4. The Python Shell window is important -- Error messages appear here

Arrange the windows on your screen so the Shell window is always visible.

2

The second new window that opened when you ran the program is the
Python Shell window. If you include lines in the program that tell the
computer to print text, the text will appear in this window.
• Resize the Python Shell window, and move it to the lower part of

the screen. Keep it open when you are writing and running
programs so you can easily spot error messages, which appear in
this window.

• To kill the program, close only the graphics window. Do not close
the Python Shell window.

5. Error messages: Making and fixing an error
To see an example of an error message, let’s try making a spelling mistake:
• Change the second statement of the program to the following:

from bisual import *

• Run the program.
Notice you get a message in red text in the Python Shell window. The message gives the filename, the line
where the error occurred, and a description of the error (in this case “ImportError: No module named bisual”).

Read error messages from the bottom up: The bottom line contains the information about the location of the
error.

• Correct the error in the program.
Whenever your program fails to run properly, look for a red error message in the Python Shell window.

Even if you don’t understand the error message, it is important to be able to see it, in order to find out that there
is an error in your code. This helps you distinguish between a typo or coding mistake, and a program that runs
correctly but does something other than what you intended.

6. Changing "attributes" (position, size, color, shape, etc.) of an object:
Now let’s give the sphere a different position in space and a radius.
• Change the last line of the program to the following:

sphere(pos=vector(-5,2,-3), radius=0.40, color=color.red)

• Run the program. Experiment with other changes to "pos", "radius", and "color", running the
program each time you change something. Try some other colors: green, blue, yellow, orange, cyan,
magenta, black, and white are all available. Make sure you understand the answers to the following
questions:

QUESTIONS ABOUT SPHERES:
What does changing the "pos" attribute of a sphere do?
What does changing the "radius" attribute of a sphere do?
What does changing the "color" attribute of a sphere do?

3

7. Autoscaling and units
VPython automatically “zooms” the camera in or out so that all objects appear in the window. Because of this
“autoscaling”, the numbers for the “pos” and “radius” could be in any consistent set of units, like meters,
centimeters, inches, etc. For example, this could represent a sphere with a radius 0.20 m and a position vector of
< 2, 4, 0 > m. In this course we will always use SI units in our programs (“Systeme International”, the system of
units based on meters, kilograms, and seconds).

8. Creating a second object
• We can tell the program to create additional objects. On a new line, after the statement that creates the

red sphere, create a green sphere whose center is at < -3, -1, 0> and whose radius is 0.15, then run the
program.

You should now see the original red sphere and a new green sphere. In later exercises, the red sphere will
represent a baseball and the green sphere will represent a tennis ball. (The radii are exaggerated for visibility.)

9. Creating an arrow object
We often use arrow objects in VPython to depict vector quantities. We next add arrows to our programs.
• Type the following on a new line, then run the program:

arrow(pos=vector(2,-3,0), axis=vector(3,4,0), color=color.cyan)

• Experiment with other changes to "pos", "axis", and "color", running the program each time you
change something. Change one thing at a time so you can tell what effect your changes have. For
example, try making a second arrow with the same "pos" but a different axis.

• Make sure you understand the answers to the following questions. If you are confused about any of
them, try going to Help->Visual in the toolbar of VIDLE. This will bring you to the VPython.org site
where you can choose a 3D object on the lefthand menu for further details.

QUESTIONS ABOUT ARROWS:
Is the "pos" of an arrow the location of its tail, its tip, or its middle?
Is the "axis" of an arrow the position of its tail, the position of its tip, or the position of the tip
relative to the tail (that is, a vector pointing from tip to tail)?
To create a sphere whose center is at the tip of the cyan arrow above, where would the "pos" of the
sphere be?

10.Multiplying by a scalar: Scaling an arrow’s axis
Since the axis of an arrow is a vector, we can perform scalar multiplication on it. Start with this arrow:

arrow(pos=vector(2,-3,0), axis=vector(3,4,0), color=color.cyan)

• Modify the axis of the arrow by changing the statement to the following, and note what happens:

arrow(pos=vector(2,-3,0), axis=-0.5*vector(3,4,0), color=color.cyan)
QUESTIONS ABOUT SCALING ARROWS:

To make an arrow 3 times as long without changing its direction, what scalar factor would you
multiply "axis" by?

4

To reverse the direction of an arrow without changing its length, what scalar factor would you
multiply "axis" by?

11.Comment lines (lines ignored by the computer)
Comment lines start with a # (pound sign).
A comment line can be a note to yourself, such as:

objects created in following lines

Or a comment can be used to remove a line of code temporarily, without erasing it.

• Put a # at the beginning of the line creating your arrow, and run the program:

#arrow(pos=vector(2,-3,0), axis=vector(3,4,0), color=color.cyan)
Note the pound sign at the beginning of the line. The pound sign lets VPython know that anything after it is just
a comment, not actual instructions. The statement will be skipped when the program is run.

• Run the program. Explain what you see.

12.Representing position vectors with arrows

• Clean up your program so it contains only the following objects:

A red sphere (representing a baseball) at location < -5, 2, -3 > , with radius 0.4
A green sphere (representing a tennis ball) at location < -3, -1, 0 >, with radius 0.15
A cyan arrow with its tail at < 2, -3, 0 > and its tip at < 2, -3, 0 > + < 3, 4, 0 >

We can use arrows to represent position vectors and relative position vectors. Remember that a relative position
vector that starts at a position A

 and ends at a position B

can be found by “final minus initial,” or AB

− .

We want to make an arrow represent the relative position vector of the tennis ball with respect to the baseball.
That is, the arrow’s tail should be at the position of the baseball (the red sphere), and its tip should be at the
position of the tennis ball (the green sphere).
• What would be the “pos” of this arrow, whose tail is on the baseball (the red sphere)?
• What would be the “axis” of this arrow, so that the tip is on the tennis ball (the green sphere)?
• Using these values of “pos” and “axis”, change the last line of the program to make the cyan arrow

point from the red baseball to the green tennis ball.
• Run the program.

CHECKPOINT: Examine the 3D display carefully.
If the cyan arrow does not point from the red baseball to the green tennis ball, correct your

program.

13.Naming objects; Using object names and attributes

• Change the position of the green sphere to < -3, -1, 3.5 >
5

• Run the program.

• Note that the relative position arrow still points in its original direction. We want this arrow to always
point toward the tennis ball, no matter what position we give the tennis ball. To do this, we will have to
refer to the tennis ball’s position symbolically. But first, since there is more than one sphere, we need to
give the objects names in order to tell them apart.

• Give names to the spheres by changing the “sphere” statements in the program to the following:

baseball = sphere(pos=vector(5, 2, -3), radius=0.40, color=color.red)
tennisball = sphere(pos=vector(-3,-1,3.5), radius=0.15, color=color.green)
We’ve now given names to the spheres. We can use these names later in the program to refer to each sphere
individually. Furthermore, we can specifically refer to the attributes of each object by writing, for example,
“tennisball.pos” to refer to the tennis ball’s position attribute, or “baseball.color” to refer to the
baseball’s color attribute. To see how this works, do the following.

• Start a new line at the end of your program and type:

print tennisball.pos

• Run the program.
• Look at the text output window. The printed vector should be the same as the tennis ball’s position.

• What do you expect to see if you add this line to your program?

print tennisball.pos - baseball.pos

• Run the program to see if your prediction was correct.

Let’s also give a name to the arrow.
• Edit the last line of the program (the cyan arrow) to the following, to give the arrow a name:

BBtoTB = arrow(pos=)
Since we can refer to the attributes of objects symbolically, we want to write symbolic expressions for the “axis”
and “pos” of the arrow, “BBtoTB”. The expressions should use general attribute names in symbolic form, like
“tennisball.pos” and “baseball.pos”, not specific numerical vector values such as
vector(-3,-1,0). This way, if the positions of the tennis ball or baseball are changed, the arrow will still
point from baseball to tennis ball.

• In symbols (letters, not numbers), what should be the “pos” of the cyan arrow that points from the baseball to
the tennis ball? Make sure that your expression doesn’t contain any numbers.

• In symbols (letters, not numbers), what should be the “axis” of the cyan arrow that points from the baseball to
the tennis ball? (Remember that a relative position vector that starts at position A

 and ends at position B

can
be found by “final minus initial,” or AB

− .). Make sure that your expression doesn’t contain any

numbers.

6

• Change the last line of the program so that the arrow statement uses these symbolic expressions for “pos” and
“axis”.

• Run the program. Rotate the 3D display and examine it closely to make sure that the cyan arrow still points
from the baseball to the tennis ball. If it doesn’t, correct your program, still without using numbers.

• Change the “pos” of the baseball to (-4, -2, 5). Change the “pos” of the tennis ball to (3, 1, -2). Run the
program to confirm that the cyan arrow still points from the baseball (red) to the tennis ball (green).

14.Reflection
At this point, you may begin answering the reflection questions for Model 1.

Remember that you only get one try per question on a reflection assignment, so be sure discuss with your group
or an instructor before answering!

15.Reference manual and programming help
There is an on-line reference manual for VPython. In the text editor (VIDLE), on the Help menu choose
“Visual”. The first link, “Reference manual”, gives detailed information on spheres, arrows, etc. In the text
editor (VIDLE), on the Help menu choose “Python Docs” to obtain detailed information on the Python
programming language upon which VPython is based. We will use only a small subset of Python’s extensive
capabilities.

7

	Introduction to VPython and 3D Computer Modeling
	1. Starting a program: Setup statements
	2. Creating an object
	3. The 3-D graphics scene
	4. The Python Shell window is important -- Error messages appear here
	5. Error messages: Making and fixing an error
	6. Changing "attributes" (position, size, color, shape, etc.) of an object:
	7. Autoscaling and units
	8. Creating a second object
	9. Creating an arrow object
	10. Multiplying by a scalar: Scaling an arrow’s axis
	11. Comment lines (lines ignored by the computer)
	12. Representing position vectors with arrows
	13. Naming objects; Using object names and attributes
	14. Reflection
	15. Reference manual and programming help

