Materials and Energy Vol.8

THIN FILMS ON SILICON
Electronic and Photonic Applications

edited by

Vijay Narayanan, Martin M Frank
IBM Thomas J. Watson Research Center, USA
& Alexander A Demkov
The University of Texas at Austin, USA

This volume provides a broad overview of the fundamental materials science of thin films that use silicon as an active substrate or passive template, with an emphasis on opportunities and challenges for practical applications in electronics and photonics. It covers three materials classes on silicon: Semiconductors such as undoped and doped Si and SiGe, SiC, GaN, and III-V arsenides and phosphides; dielectrics including silicon nitride and high-k, low-k, and electro-optically active oxides; and metals, in particular silicide alloys. The impact of film growth and integration on physical, electrical, and optical properties, and ultimately device performance, is highlighted.

Contents:

• Foreword (Leonard C. Feldman)
• Introduction (Vijay Narayanan, Martin M Frank and Alexander A Demkov)
• Semiconductors on Silicon:
 • Current Trends in Group-IV Semiconductor Epitaxy for Nanoelectronics (Jean-Michel Hartmann)
 • Silicon Carbide on Silicon: 3C-SiC Buffer Layers for GaN LEDs (Jessica Chai, Li Wang and Sima Dimitrijev)
 • Epitaxy of GaN on Silicon (Yu Cao, Satyaki Ganguly, Grace (Huili) Xing and Debdeep Jena)
 • III-V Semiconductors on Silicon: Arsenides and Phosphides for QWFETs and BJTs (Dmitri Lubyshev)
• Dielectrics on Silicon:
 • Organosilicates on Si: Low-k Dielectrics for MOSFET Interconnect Insulation (Mikhail R Baklanov, Kris Vanstreels, Chen Wu, Yunlong Li and Kristof Croes)
 • Silicon Nitride on Si: Electronic Structure of Traps for Flash Memory (Vladimir A Gritsenko)
 • High-k Oxides on Si: MOSFET Gate Dielectrics (Takashi Ando, Unoh Kwon, Siddarth Krishnan, Martin M Frank and Vijay Narayanan)
 • Materials for DRAM Memory Cell Applications (Uwe Schroeder and Stefan Slesazeck)
 • Electro-Optically Active Oxides on Silicon for Photonics (Stefan Abel and Jean Pompeyrine)
• Metals on Silicon:
 • Silicides on Silicon: MOSFET Contacts (Ahmet S Özcan)

Readership:
Graduate students and researchers in the fields of materials science, applied physics, and electrical engineering

350pp | Aug 2016 978-981-4740-47-0

http://www.worldscientific.com/worldscibooks/10.1142/9908
Dr. Narayanan received his B.Tech. in Metallurgical Engineering from the Indian Institute of Technology, Madras (1995), and his M.S. (1996) and Ph.D. (1999) in Materials Science and Engineering from Carnegie Mellon University where his dissertation concentrated on understanding the origins of line and planar defects during the epitaxial growth of Gallium Phosphide on different orientations of Si. Currently, Dr. Narayanan is a Manager and Distinguished Research Staff Member within the IBM T. J. Watson Research Center where his research interests range from High-k/Metal Gate materials for CMOS Logic to Ferroelectric field effect transistors for low voltage applications. He is an author or co-author of over 100 journal and conference papers and holds 75 US patents.

Dr. Narayanan was awarded an IBM Research Division Award for contributions to High-k/Metal Gates in 2006 and was recognized as an IBM Master Inventor in 2007. He is an IEEE Senior Member and was elected a fellow of the American Physical Society in 2011. In addition, in recognition of his contributions to high-k/metal gate technology, Dr. Narayanan received an IBM Corporate Award in 2013.

new materials for CMOS transistor scaling, including high-permittivity (high-k) gate dielectrics, metal gate electrodes, high-carrier-mobility materials such as Ge and InGaAs, and ferroelectrics. In 1996, Dr. Frank earned a Diplom degree in physics from Ruhr-Universität Bochum, Germany. He then joined Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin, Germany, studying the catalytic activity of oxide-supported metal nanoparticles using surface science techniques in ultra-high vacuum. In 2000, Dr. Frank received a Ph.D. degree in physics from Humboldt-Universität zu Berlin, and was awarded the Otto Hahn Medal for outstanding scientific achievements. In 2003, Dr. Frank joined IBM. During an assignment to IMEC in Leuven, Belgium, he worked in the field of photoresist chemistry. In 2007, he was recognized as an IBM Master Inventor. In 2013, he received an IBM Research Division Award for his contributions to high-k/metal gate technology.

Dr. Frank has authored or co-authored more than 100 publications including multiple review articles and book chapters, has given more than 60 invited and contributed presentations, and holds more than 50 U.S. patents.

Prof. Demkov has published over 100 research papers and has been awarded seven U.S. patents. He has contributed to several books and edited one, entitled “Materials Fundamentals of Gate Dielectrics,” and has also co-authored the 2005 edition of the International Technology Roadmap for Semiconductors (ITRS). In 2002-2004, he served as Associate Editor of the Journal of Vacuum Science and Technology B. He also served as Guest Editor for several issues of physica status solidi (b). Demkov received the NSF CAREER award, 2011 IBM Faculty Award, and is a Fellow of the American Physical Society.