Physics 317K Formula Sheet

One dimensional motion

displacement: $\Delta \mathbf{x} = \mathbf{x}_2 - \mathbf{x}_1$ average velocity: $\mathbf{v}_{avg} = \frac{\Delta x}{\Delta t}$, instantaneous velocity: $\mathbf{v} = \frac{dx}{dt}$ average acceleration: $\mathbf{a}_{avg} = \frac{\Delta v}{\Delta t}$, instantaneous acceleration: $\mathbf{a} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$ kinematic equation 1: $\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$ kinematic equation 2: $\mathbf{x} - \mathbf{x}_0 = \mathbf{v}_0 t + \frac{1}{2}\mathbf{a}t^2$ kinematic equation 3: $\mathbf{v}^2 = \mathbf{v}_0^2 + 2\mathbf{a}(\mathbf{x} - \mathbf{x}_0)$ kinematic equation 4: $\mathbf{x} - \mathbf{x}_0 = \frac{1}{2}(\mathbf{v}_0 + \mathbf{v})$ t kinematic equation 5: $\mathbf{x} - \mathbf{x}_0 = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$

Projectile motion

kinematic equation 1: $\mathbf{x} - \mathbf{x}_0 = (\mathbf{v}_0 \cos \theta)\mathbf{t}$ kinematic equation 2: $\mathbf{y} - \mathbf{y}_0 = (\mathbf{v}_0 \sin \theta)\mathbf{t} - \frac{1}{2}\mathbf{g}\mathbf{t}^2$ kinematic equation 3: $\mathbf{v}_y = \mathbf{v}_0 \sin \theta - \mathbf{g}\mathbf{t}$ kinematic equation 4: $\mathbf{v}_y^2 = (\mathbf{v}_0 \sin \theta)^2 - 2\mathbf{g}(\mathbf{y}-\mathbf{y}_0)$

Newtons Laws

Force F = ma, Weight W = mgequilibrium conditions: $\Sigma F_x=0$, $\Sigma F_y=0$, $\Sigma F_z=0$ non-equilibrium conditions: $\Sigma F_x=ma_x$, $\Sigma F_y=ma_y$, $\Sigma F_z=ma_z$ static friction force $f_s \leq \mu_s F_n$, kinetic friction force $f_k = \mu_k F_n$

Work and Energy

work: W = F $\cos\theta \Delta x$, work $\theta=0$: W = F Δx potential energy: U = mgy = mgh elastic potential energy stored in a spring: U_s = $\frac{1}{2}kx^2$ kinetic energy: K = $\frac{1}{2}mv^2$ work energy theorem: W_{net} = K_f - K_i energy conservation: K_i + U_i = K_f + U_f non-conservative work: W_{nc} = (K_f + U_f) - (K_i + U_i) power: P = $\frac{E}{t}$ = Fv

Momentum conservation and collisions

momentum: p = mv, impulse = F Δt impulse-momentum theorem: F $\Delta t = \Delta p = mv_f - mv_i$ conservation of momentum in collisions: $\Sigma(mv)_{initial} = \Sigma(mv)_{final}$

Rotational motion

rotational equation 1: $\omega = \omega_0 + \alpha t$ rotational equation 2: $\theta - \theta_0 = \omega_0 t + \frac{1}{2}\alpha t^2$ rotational equation 3: $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ rotational equation 4: $\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega) t$ rotational equation 5: $\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2$ tangential velocity: $v_t = \omega r$ tangential acceleration: $a_t = \alpha r$ centripetal (radial) acceleration: $a_r = \frac{v^2}{r} = \omega^2 r$ total acceleration: $a = \sqrt{(a_r^2 + a_t^2)}$ centripetal force: $F_r = m a_r = m \frac{v^2}{r}$ **Rotational equilibrium and dynamics** rotational kinetic energy: $K_r = \frac{1}{2}I \omega^2$ moment of inertia: $I = \Sigma m_i r_i^2$ torque: $\tau = Fd$ (d=r sin θ), torque: $\tau = I \alpha$ equilibrium conditions: $\Sigma F_x=0$, $\Sigma F_y=0$, $\Sigma \tau=0$ angular momentum: $L = I \omega$ angular momentum conservation: $I_i\omega_i = I_f\omega_f$

Gravitation

gravitational force: $F = G \frac{Mm}{r^2}$ gravitational potential energy: $U = -G \frac{Mm}{r}$ escape speed: $v = \sqrt{\frac{2GM}{R}}$ energy in planetary motion: $E = K + U = \frac{GMm}{2r} - \frac{GMm}{r} = -\frac{GMm}{2r}$ **Fluids** density: $\rho = \frac{m}{V}$, pressure: $p = \frac{F}{A}$ pressure at depth h: $p = p_0 + \rho gh$ buoyant force: $F_b = m_f g$ equation of continuity: $R_v = Av = constant$ Bernoulli's equation: $p + \frac{1}{2}\rho v^2 + \rho gy = constant$ **Oscillation**

simple harmonic motion: $x(t) = x_m cos(\omega t + \phi)$ $v(t) = -\omega x_m sin(\omega t + \phi)$ $a(t) = -\omega^2 x_m cos(\omega t + \phi)$ period of linear oscillator: $T = 2\pi \sqrt{\frac{m}{k}}, \ \omega = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$ total mechanical energy: $E = K + U = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kx_m^2 = \frac{1}{2}mv_m^2$

period of pendulum: $T = 2\pi \sqrt{\frac{L}{g}}$

Waves $y(x,t) = y_m sin(kx - \omega t), \ k = \frac{2\pi}{\lambda}, \ \omega = \frac{2\pi}{T} = 2\pi f, \ v = \lambda f = \frac{\lambda}{T}$ wave speed in a string: $v = \sqrt{\frac{\pi}{\mu}}$ average power transmitted: $P_{avg} = \frac{1}{2}\mu v\omega^2 y_m^2$ sound intensity: $I = \frac{P}{A} = \frac{P_s}{4\pi r^2}$ sound level: $\beta = (10dB) \log \frac{I}{I_0}, I_0 = 10^{-12} W/m^2$ Doppler effect: $f' = f \frac{v \pm v_D}{v + v_S}$ Temperature, Heat specific heat c: $Q = mc(T_f - T_i)$ heat of transformation: Q = Lmideal gas: pV = nRTwork done by a given system: $\Delta W = p \Delta V$ work in isothermal process: $\Delta W = n \hat{R} T \ln \frac{V_f}{V}$ first law of thermodynamics: $\Delta E_{int} = Q - W$ change of entropy: $\Delta S = \frac{Q}{T}$ Kelvin temperature scale T: $T = T_C + 273K$ efficiency of engine: $\varepsilon = \frac{|W|}{|Q_H|}$ efficiency of ideal engine: $\varepsilon = 1 - \frac{T_L}{T_{\mu}}$ **Conversion factors and Constants:** 1 ft = 12 in, 1 km = 1000 m, 1 m = 100 cm = 1000 mm = 3.28 ft1 ton = 1000 kg $1 \text{ atm} = 1.013 \times 10^5 \text{ Pa}$ gravitational acceleration $a = -g = -9.8 \text{ [m/s^2]}$ gravitational constant $G=6.6726\times 10^{-11}~\rm Nm^2/kg^2$ universal gas constant R = 8.31 J/mol K