In medium sum rules for vector and axial-vector mesons

Paul Hohler
Cyclotron Institute, Texas A&M University

work in progress with R. Rapp
Chiral symmetry restoration

Lattice calculations clearly show the quark condensate approaching 0 at higher T, indicative of chiral symmetry restoration.

Question: Can chiral symmetry restoration be confirmed experimentally?

Direct measurement of the chiral condensate is not possible.

In medium sum rules for vector and axial-vector mesons may provide indirect means to study chiral symmetry restoration experimentally.
Sum Rules

• Theoretical tool used to study correlation functions.
• Technique is useful because it relates high energy to low energy physics.
 – i.e. relates non-perturbative effects to perturbative effects.
 – Applied to a wide range of topics, from hadron spectroscopy to hydrodynamics.

\[
\Pi^{\mu\nu}(q) = i \int d^4x \ e^{iq \cdot x} \langle T j^\mu(x) j^\nu(0) \rangle
\]

\[
\Pi(q^2) = \Pi(0) + \Pi'(0)q^2 + \frac{q^2}{\pi} \int ds \ \frac{\text{Im} \Pi(s)}{s^2(s-q^2-i\epsilon)}
\]

\[
\Pi(Q^2) = \sum c_n \left(\frac{Q^2}{Q^2} \right)^n
\]

Dispersion relation
Operator product expansion

Sum rules provide a way to determine the low energy operators, or use the low energy operators (determined independently) to gain information about the spectral function.
• QCD sum rules (with Borel transform, in vacuum):
 – Applicable to vector or axial vector channel individually.

\[
\frac{1}{M^2} \int ds \frac{ρ_v(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{α_s}{π} \right) + \frac{m_q⟨\bar{q}q⟩}{M^4} + \frac{1}{24M^4} \left(\frac{α_s}{π} G^{2}_{μν} \right) - \frac{56πα_s}{81M^6} ⟨O^V⟩
\]

\[
\frac{1}{M^2} \int ds \frac{ρ_A(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{α_s}{π} \right) - \frac{m_q⟨\bar{q}q⟩}{M^4} + \frac{1}{24M^4} \left(\frac{α_s}{π} G^{2}_{μν} \right) + \frac{88πα_s}{81M^6} ⟨O^A⟩
\]

Factorization statement (in vacuum): \[⟨O_4⟩ = ⟨O^V_4⟩_0 = ⟨O^A_4⟩_0 = \kappa⟨\bar{q}q⟩^2\]

Condensates are universal and can thus be determined from other processes.

Places constraints on the vector and axial-vector spectral functions separately.
• QCD sum rules (with Borel transform, in medium):
 – Condensates acquire a temperature dependence.
 – Higher twist operators are added
 • related to in medium density of hadrons.

\[
\frac{1}{M^2} \int ds \frac{\rho_V(s)}{s} e^{-s/M^2} = \frac{1}{8\pi^2} \left(1 + \frac{\alpha_s}{\pi} \right) + \frac{m_q \langle \bar{q} q \rangle_T}{M^4} + \frac{1}{24M^4} \langle \frac{\alpha_s}{\pi} G_{\mu\nu}^2 \rangle_T - \frac{56\pi\alpha_s}{81M^6} \langle \mathcal{O}_4^V \rangle_T
\]

+ twist-2 operators

Same structure for the axial vector QCD sum rule (twist-2 operators are chirally symmetric).

By studying the medium effects of the operators, one can learn something about the (axial) vector spectral function(s).
Weinberg type sum rules (in vacuum):
- Studies the difference between vector and axial meson spectral functions.
- Directly related to chiral symmetry breaking.
- Some can be derived from the QCD sum rules.

\[\int ds \frac{\rho_V - \rho_A}{s^2} = \frac{1}{3} f_\pi^2 \langle r_\pi^2 \rangle - F_A \]
Das, Mathur, and Okubo, 1967

\[\int ds \frac{\rho_V - \rho_A}{s} = f_\pi^2 \]
Weinberg, 1967

\[\int ds \rho_V - \rho_A = -4m_q \langle \bar{q}q \rangle = 2f_\pi^2 m_\pi^2 \]
Kapusta and Shuryak, 1994

\[\int ds (\rho_V - \rho_A)s = f_\pi^2 m_\pi^4 - 2\pi \alpha_s \left(\frac{16}{9} \langle \mathcal{O}_4^{SB} \rangle \right) \]
\[\langle \mathcal{O}_4^{SB} \rangle = \langle \mathcal{O}_4 \rangle = \kappa \langle \bar{q}q \rangle^2 \]

The chiral condensate (and f_π) can be measured experimentally by detecting both the vector and the axial-vector spectral functions.
Weinberg type sum rules (in medium):

1st \[\int ds \frac{\rho_V - \bar{\rho}_A}{s} = 0 \]

2nd \[\int ds \rho_V - \bar{\rho}_A = -2m_q \langle \bar{q}q \rangle_T \]

3rd \[\int ds (\rho_V - \bar{\rho}_A)s = -2\pi\alpha_s \left(\frac{16}{9} \langle \mathcal{O}_4^{SB} \rangle_T \right) \]

Chiral symmetry restoration can be observed by experimentally measuring the in-medium spectral functions for both the vector and axial vector mesons.
• Goal: To use both the QCD sum rules and the Weinberg sum rules in conjunction with data, to constrain the possible in medium effects of the vector and axial-vector spectral functions.

In vacuum: ALEPH data

Model (V & A)

Weinberg sum rules

Vacuum ρ_V spectral function

Vacuum ρ_A spectral function

In medium:

Model (V)

QCD sum rules

ρ_V spectral function

Check Weinberg sum rule

Gain insight into the mechanism of chiral symmetry restoration!!

Model (A)

ρ_A spectral function
• We are not the first to look into this:

• All showed a reduction of the continuum threshold.
• Most showed a reduction of the rho mass and a broadening of its width.
Vacuum

• Consider a phenomenological model of the spectral functions for both the vector and axial-vector mesons.
 – Constrain the parameters by the ALEPH data (τ decay) and the Weinberg sum rules (0-2).

• Key and novel features:
 – The rho spectral function comes from a calculation of a microscopic theory. This is left unchanged. Rapp et al (1999)
 – The continuum contribution is chosen to be the same from both the vector and axial-vector channels.
 • A continuous continuum is considered.
 • Pushes the continuum “threshold” to a higher energy.
 – Included the ρ’ resonance with a Breit-Wigner structure.
 – Agreement with Weinberg sum rules requires an excited axial vector resonance state.
Spectral functions in vacuum

Data from ALEPH (Barate et al. 1998)

Some parameters of interest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ' mass</td>
<td>1.56 GeV</td>
</tr>
<tr>
<td>ρ' width</td>
<td>0.32 GeV</td>
</tr>
<tr>
<td>a_1 mass</td>
<td>1.24 GeV</td>
</tr>
<tr>
<td>a_1 width</td>
<td>0.61 GeV</td>
</tr>
<tr>
<td>a_1' mass</td>
<td>1.74 GeV</td>
</tr>
<tr>
<td>a_1' width</td>
<td>0.20 GeV</td>
</tr>
</tbody>
</table>
In medium vector spectral function

- Values of the condensates change with medium effects.

- **Chiral condensate:**
 - Approximate lattice data with a Hadron Resonance Gas fit.

- **Four quark condensate:**
 - Assumed chiral restoration occurred at same temperature as chiral condensate.
 - Insured that the vector and axial-vector condensates were consistent with low temp expectations.

The in medium effects increase the OPE side of the sum rule.
In medium vector spectral function

- In medium effects on the ρ spectral peak determined from microscopic calculation.
 Rapp et al (1999)

- The continuum acquires no additional in medium effects.

- All other effects are implemented by shifting the mass and expanding the width of the ρ'.

![Graphs showing spectral function behaviour](image)
In medium vector spectral function

The mass drop and width broadening of the ρ' peak has same effect as the reduction of the continuum threshold!!

Higher resonances “melt” causing the appearance of continuum being extended to lower energies!!
In medium axial vector spectral function

• No calculation from a microscopic model axial vector channel.
 – Fewer constraints as compared with vector channel.

• Continuum acquires no medium effect.
• \(a_1'\) acquires a mass shift and width broadening.
• Medium effects of \(a_1\) modeled in different ways:
 – Simple mass shift and width broadening.
 – Two component model.

• QCD sum rules can constrain parameters, while Weinberg sum rules will select the preferred model.

Stay Tuned!
Conclusion and Summary

• Showed sum rules are a useful tool to study vacuum and in medium spectral functions.

• Constructed vector and axial-vector spectral functions in vacuum consistent with data and QCD and Weinberg sum rules.
 – Postulated the presence of an excited axial-vector resonant state.

• Examined the in medium vector spectral function using QCD sum rules
 – Showed that the ρ' mass decreases and the width broadens.
 – Consistent with idea that the continuum threshold decreases.

• In medium axial-vector function will be examined to understand chiral symmetry restoration mechanism.