In quantum physics, state functions Ψ satisfy equations of the form AΨ = aΨ. Here A is an operator corresponding to some physical quantity, such as energy or momentum, and we want to solve this equation to find a state Ψ that has a specific real value a for the physical quantity represented by the operator. The value a is called the eigenvalue, and the solution Ψ is called an eigenstate of A. To make that clear, the specific solution is usually written as Ψa. The Schrödinger equation results from asking, what is the operator H that corresponds to the (non-relativistic) total energy of a system? This amounts to asking, what are the operators for the kinetic and potential energies of a system? Such operators can be specified only in specific coordinate systems, the most common being (r,t) and (x,t). Schrödinger found that the operator for total energy H is given simply by H = iℏ∂/∂t. Solving HΨ(t) = EΨ(t) we instantly find that Ψ(t) = C exp(−iEt/ℏ), where C is an arbitrary constant. If we work in terms of eigenstates of E, then we can solve instead an equation of the form (K + V)Ψ = EΨ and we now need operators for the kinetic (K) and potential (V) energies of the system. Schrödinger found that the momentum is represented by the operator p = −iℏ∇, or in one dimension, just px = −iℏ∂/∂x. Then the kinetic energy operator for a non-relativistic system is K = p2/(2m) or −ℏ2∇2/(2m). In one dimension, of course, then K = −((ℏ2)/(2m))(∂2/∂x2). [A reminder of what the ∇ operator is.]
|
Notice that the solutions to this equation are real. |
For a particle of definite energy,
we can always write Ψ(r,t) = ψ(r)exp(−iEt/ℏ) and
of course we can make the same separation for Ψ(x,t). Therefore
given a potential that is only a function of r or of x, we have
a relatively simple equation to solve for ψ. The number of
quantum numbers needed to specify the eigenstates of a system
depends upon the number of space degrees of freedom the system
has. A system with only one degree of freedom (for
example, it can only be found somewhere on the x axis) needs
only one quantum number to label the energy eigenvalues.
Vitally important facts about these general relationships:
Remember a nanometer is 10−9 meters. |
Probability distributions of the oscillator states |
Bound states illustrate two basic features of quantum physics. First, the bound state functions we have discussed can be normalized, by which we mean that we can choose an overall constant such that ∫ψ(x)2dx = 1. When this is done, the probability distribution P(x) will give the absolute, rather than relative, probability of finding the particle at x. The other important property that can be easily illustrated is that state functions belonging to different quantum numbers are orthogonal, that is, ∫ψn(x)ψm(x)dx = 0 when n ≠ m. The integrals can be taken to extend from minus infinity to plus infinity. With normalized state functions, you can calculate the expectation value of any operator A, using ∫Ψ*AΨ dx.
Because the Laplacian
operator ∇2 in cartesian coordinate form does
not mix x, y and z coordinates, it is possible to do a very
simple 3-dimensional example using our previous results. Imagine
a quantum particle inside an impenetrable cube of length L on a
side. The Schrödinger equation can be separated into three
different equations, one for each of the coordinates x, y and z,
with the full state function given just as a product of the
three independent solutions. This is called the separation
of variables method. In other words we would have
something like ψ(x,y,z) = X(x)Y(y)Z(z) where each term in the
product is the infinite 1D well solution. This approach is
generally used to tackle ANY 3D problem in quantum physics.
This example allows us to demonstrate one of the most important features of quantum physics. When two or more different states have the same energy, this situation is called degeneracy. In quantum physics, every degeneracy corresponds to a symmetry of the system. A symmetry is a change that can be made in some aspect of a system, that has no physical consequences, in other words, leaves the physics of the system unaffected. In the case of the cubical box, the symmetry involves relabeling the axes x, y and z. Clearly the choice of which axis is called x, which is called y and which is called z is completely arbitrary. The result is that for the set of quantum numbers (nx,ny,nz), the state (1,2,3) has precisely the same energy as the state (2,3,1) or the state (3,1,2).
In convenient units, ℏ is about 200 × 10−24 eV-seconds. Other units are tabulated here. A convenient unit for atomic and molecular distances is a0, the so-called Bohr radius, which is about 5.3 x 10−11 meters.