Experiment to measure the electric dipole moment (edm) of the electron using laser-cooled Cs atoms

YONG-SUP IHN, DANIEL HEINZEN, The University of Texas — The electron edm d_e is known to be smaller in magnitude than $1.6 \times 10^{-27} \text{e}\cdot\text{cm}$ [1]. We will describe progress on an ongoing experiment designed to be sensitive to an electron EDM d_e as small as $10^{-29} \text{e}\cdot\text{cm}$. The experiment will search for the resulting edm of the Cs atom, proportional to d_e, using laser-cooled Cs atoms held in an optical dipole force trap. Important features of the experiment include resonant optical cavities to accurately define the trapping laser field, in-vacuum high voltage electrodes, and methods to reduce magnetic noise to low levels, including the use of a novel titanium vacuum chamber.