Intuitively we expect the centripetal force should depend on r, m, and v, and only on these variables.

Assume: The form of the force to be $F = k m^x r^y v^z$, where k is dimensionless.

![Diagram of a point mass m moving in a plane with coordinates x, y, and z.]

Determine expressions for x, y, and z in the function $F = k m^x r^y v^z$.

A) $x = 1$, $y - z = 1$, $z = -2$

B) $x = 1$, $y + z = 1$, $z = 2$

C) $x = 1$, $y + z = 1$, $z = -2$

D) $x = 2$, $y + z = 2$, $z = -2$

E) $x = 1$, $y + z = 2$, $z = 2$
\[[F] = [m \, a] = M \frac{L}{T^2} = M L T^{-2}, \]

\[[k \, \text{m}^x \, \text{r}^y \, \text{v}^z] = M^{x} L^{y} \frac{L^{z}}{T^{z}} = M^{x} L^{y+z} T^{-z} \]

Therefore \(M L T^{-2} = M^{x} L^{y+z} T^{-z} \)

By equating powers of \(M \), \(L \), and \(T \), we have \(x = 1 \), \(y + z = 1 \), and \(z = 2 \). Or, substituting \(z = 2 \) into \(y + z = 1 \), we have \(y = -1 \).
That is, \(x = 1 \), \(y = -1 \), and \(z = 2 \), and the equation for \(F \) is

\[F = m^{1} \frac{v^{2}}{r^{1}} = m \frac{v^{2}}{r}, \]

as expected. \(F = m^{1} \frac{v^{2}}{r^{1}} = m \frac{v^{2}}{r} \) is commonly called the centripetal force.

Answer B.

01.04-01’Dimensional’Analysis 2004-3-24