Consider three position curves between time points A and B.

\[\bar{v} = \frac{v_A + v_B}{2}, \]

when a is constant.

Choose the correct relationship among quantities \bar{v}_1, \bar{v}_2, and \bar{v}_3.

A) $\bar{v}_1 < \bar{v}_2 < \bar{v}_3$

B) $\bar{v}_1 = \bar{v}_2 = \bar{v}_3$

C) $\bar{v}_1 > \bar{v}_2 > \bar{v}_3$
The average velocity of an object is defined as follows

\[\bar{v} = \frac{\text{displacement}}{\text{time}} = \frac{s_B - s_A}{t_B - t_A}. \]

All three curves have exactly the same change in position \(\Delta s = s_B - s_A \) in exactly the same time interval \(\Delta t = t_B - t_A \). Hence all three average velocities are equal

\[\bar{v}_1 = \bar{v}_2 = \bar{v}_3. \]

Answer B.

02.02-01 Average velocity 2004-3-24