A simple pendulum consists of a string of a length \(r \) and a ball attached to its end. Consider the case where the string is making an angle \(\theta \) with the vertical and the tangential velocity is pointing toward the vertical line.

![Diagram of a pendulum](image)

The tangential acceleration is given by

A) \(a_{tangent} = g \sin \theta \).

B) \(a_{tangent} = g \cos \theta \).

C) \(a_{tangent} = -g \sin \theta \).

D) \(a_{tangent} = -g \cos \theta \).
The tangential acceleration is opposite to that of \(s = r \theta \). The magnitudes of the tangential acceleration and the radial acceleration are

\[
a_t = a_g \sin \theta = -g \sin \theta \quad \text{and} \quad a_r = \frac{v^2}{r}.
\]

Answer C.

04.05-02 A simple pendulum 2006-2-11