Blocks with masses m_1 and m_2 are connected by a string, which passes over a pulley which has a radius R and the moment of inertia I.

The acceleration of the two masses is a, and the pulley is constrained to rotate clockwise with the rotational equation of motion of the pulley given by

A) $(T_1 - T_2)R = \frac{Ia}{R}$.

B) $(T_2 - T_1)R = \frac{Ia}{R}$.

C) $(T_1 - T_2)R = Ia$.

D) $(T_2 - T_1)R = Ia$.

The rotational equation of motion is given by \(\tau = I \alpha = I \frac{a}{R} \).

Since \(m_2 \) is descending and the pulley is rotating in a clockwise manner, \(T_2 \) is greater than \(T_1 \).

Answer \textbf{B}.

10.08-05·Two·Blocks·and·a·Pulley 2006-10-10