A projectile trajectory has a maximum height \(h \), a range \(R \). The mass is \(m \) and the initial speed \(v_0 \). The angle between the initial velocity vector and the horizontal direction is \(\theta \).

Determine the angular momentum \(\ell \) at \(P \) with respect to \(O \).

A) \[\ell = \frac{R m v_{0x}}{2} = \frac{R m v_0 \cos \theta}{2} . \]

B) \[\ell = R m v_{0y} = R m v_0 \sin \theta . \]

C) \[\ell = h m v_{0x} = h m v_0 \cos \theta . \]
By inspection, at P the momentum vector is $m v_{0x}$.

It is along the horizontal direction.

The lever arm is the perpendicular distance from O to the momentum vector, which is h.

So the angular momentum is $\ell = h m v_{0x}$.

Answer C.

11.03-02'Angular'Momentum'at'P'about'O 2004-3-24