A circular disk is suspended by a wire attached to the top of some fixed support. When the disk is twisted through some small angle θ, the twisted wire exerts a restoring torque on the body which satisfies $\tau = I \alpha = I \frac{d^2 \theta}{dt^2} = -\kappa \theta$, where κ is referred to as the torsion constant of the wire.

Find the period of the oscillation.

A) $T = \sqrt{\frac{I}{\kappa}}$.
B) $T = 2\pi \sqrt{\frac{I}{\kappa}}$.
C) $T = \sqrt{\frac{\kappa}{I}}$.
D) $T = 2\pi \sqrt{\frac{\kappa}{I}}$.
Present equation of motion implies that, \(\omega = \frac{\kappa}{I} \), in turn: \(T = 2\pi \sqrt{\frac{I}{\kappa}} \).

Answer B.

13.04-04 `Torsional` Pendulum 2004-3-24