Note: \(\oint \) is an integral over a surface area.

Newton’s Law of Universal Gravitation is

A) \[\oint g \, ds = \frac{M}{G}. \]

B) \[\oint g \, ds = \frac{4\pi M}{G}. \]

C) \[\oint g \, dA = GM. \]

D) \[\oint g \, dA = 4\pi GM. \]
A high school physical science textbook uses $F = G \frac{M m}{r^2}$.

To check to see if this is correct, for a spherical shell (surface area is $4 \pi r^2$) about a point mass M, we have

$$\int g \, dA = 4 \pi G M$$

$$g \int dA = 4 \pi G M, \quad g \text{ is constant}$$

$$g \, 4 \pi r^2 = 4 \pi G M$$

$$g r^2 = G M$$

$$g = G \frac{M}{r^2}, \quad \text{so}$$

$$F = m g = G \frac{M m}{r^2}, \quad \text{Q.E.D.}$$

Answer D.

14.01-01 Newton's Law 2004-3-24