Consider a satellite moving near the Earth surface, the radius of its orbit \(r \) is approximately the radius of the Earth \(R \).

The period \(T \) of the satellite is

A) \(T = 2\pi \sqrt{\frac{R}{g}} \).

B) \(T = \sqrt{\frac{g}{R}} \).

C) \(T = 2\pi \sqrt{\frac{g}{R}} \).

D) \(T = \sqrt{\frac{R}{g}} \).
\[g = \omega^2 R, \quad \text{so} \]
\[\omega = \sqrt{\frac{g}{R}}, \quad \text{and} \]
\[T = \frac{2\pi}{\omega}, \quad \text{so} \]
\[= 2\pi \sqrt{\frac{R}{g}}. \]

\textbf{Answer A.}