Consider containers with liquid and blocks.

Case A: Block 1 is floating on the liquid. The submerged volume $x V_1 = V_L$ where V_1 is the volume of block 1, and V_L displaced volume of the liquid.

Case B: Block 1 and Block 2 are submerged in the liquid.

Notations:

Liquid) density: ρ_L, volume: V_L.

Block 1) density: ρ_1, volume: V_1.

Block 2) density: ρ_2, volume: V_2.

![Diagram with blocks](image)

Choose the correct relationship between densities.

A) $\rho_1 = x \rho_L$.

B) $x \rho_1 = \rho_L$.
Since block 1 is floating, Archimedes’ principle implies that the weight of the block equals the weight of the displaced liquid, i.e.,

\[m_1 g = m_L g. \]

This leads to

\[\rho_1 V_1 = \rho_L V_L = \rho_L x V_1. \]

Thus

\[\rho_1 = x \rho_L. \]

Answer A

15.04-01 Archimedes Principle 2007-4-26