An ice cube is floating on the water as shown in the sketch. The height within the water is \(b \) and above the water is \(a \).

Define the following set of symbols.

- \(W_{a}^{\text{ice}} \) = Weight of the ice above the water.
- \(W_{b} \) = Weight of the ice below the water.
- \(V_{a} \) = Volume of the ice above the water.
- \(V_{b} \) = Volume of the ice below the water.
- \(W_{a}^{\text{water}} \) = Weight of water in volume \(V_{a} \).
- \(W_{b}^{\text{water}} \) = Weight of water in volume \(V_{b} \).

The equilibrium condition can be expressed as which of the following?

A) \(W_{b}^{\text{water}} = W_{a}^{\text{ice}} \).

B) \(W_{b}^{\text{water}} = W_{a}^{\text{ice}} + W_{b}^{\text{ice}} \).

C) \(W_{a}^{\text{water}} + W_{b}^{\text{water}} = W_{a}^{\text{ice}} + W_{b}^{\text{ice}} \).
Archimedes’ principle implies

Answer B

15.04-05 ‘Floating Ice Block’ 2007-4-26