A horizontal string transmits a power \(P \) if a wave with an amplitude \(A \) and an angular frequency \(\omega \), is traveling along it. If both the amplitude \(A \) and the tension \(F \) along the string are doubled, the new power of transmission is \(P' \), then the ratio of \(\frac{P}{P'} \) is

A) \(\frac{P}{P'} = 2 \).

B) \(\frac{P}{P'} = 2 \sqrt{2} \).

C) \(\frac{P}{P'} = 4 \).

D) \(\frac{P}{P'} = 4 \sqrt{2} \).
\[P = \frac{1}{2} \mu (\omega A)^2 v, \text{ where } v = \sqrt{\frac{F}{\mu}}. \]

So

\[P = \frac{1}{2} \mu (\omega A)^2 \sqrt{\frac{F}{\mu}} = \frac{1}{2} \sqrt{\mu} \omega^2 \sqrt{F A^2}, \]

\[\frac{P'}{p} = \frac{\sqrt{F'} A'^2}{\sqrt{F A^2}} = \frac{\sqrt{2F} (2A)^2}{\sqrt{F A^2}} = 4 \sqrt{2}. \]

Answer D.

16.08-02 Power of Transmission 2004-4-22