Consider the wave pattern of \(s = s_{\text{max}} \cos(kx - \omega t) \) at \(t = 0 \) as shown. Determine \(\Delta P \) at the most rarefied point, \(B_3 \).

Determine \(\Delta P \) at the most rare field point, \(B_3 \). Which one is right?

A) \(\Delta P = \Delta P_{\text{max}} \).

B) \(\Delta P = 0 \).

C) \(\Delta P = -\Delta P_{\text{max}} \).
At \(t = 0 \), point \(B_3 \) is at \(k x = \frac{3\pi}{2} \).

\[
\Delta P = \Delta p_{max} \sin \left(k x - \omega t \right) = \Delta p_{max} \sin \left(\frac{3\pi}{2} \right) = -\Delta P_{max}.
\]

Answer C

17.02-01 ‘Compression and Rarefaction Pattern’ 2004-4-27