Given two conducting spheres \(A \) and \(B \). There are positive charges on \(B \); i.e., \(Q_B > 0 \). The set up is in static equilibrium.

What is the sign of the net charge on \(A \)?

A) negative
B) positive
C) neutral
D) negative or neutral
E) positive or neutral
Coulomb’s law is $\vec{F}_{AB} = k \frac{Q_A Q_B}{r^2} \hat{r}_{AB}$, which tells us that unlike charges attract. Consequently, if $Q_B > 0$ then $Q_A < 0$; i.e., negative.

However if the net charge on sphere B is neutral, the influence of the positive charge on sphere A will polarize sphere B, such that the right-hand side of sphere A will become negative and the left-hand side of sphere A will become positive. This will produce an attractive force between sphere A and sphere B.

The answer is “negative or neutral”.

Answer D.

23.03-03·Electrostatic·Attraction 2006-9-14