Consider an electrostatic situation. A parallel plate system has a plate charge \(+Q \) on the left-hand plate and a plate charge \(-Q \) on the right-hand plate. Each plate has an area \(A \).

Determine the electric field \(E_{gap} \) at \(P \), within the gap.

A) \(\vec{E} = \frac{Q}{\epsilon_0 A} \), to the right.

B) \(\vec{E} = \frac{Q}{\epsilon_0 A} \), to the left.

C) \(\vec{E} = \frac{2Q}{\epsilon_0 A} \), to the right.

D) \(\vec{E} = \frac{2Q}{\epsilon_0 A} \), to the left.
The areal charge density is $\sigma = \frac{Q}{A}$, therefore

$$E_{gap} = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A}.$$

Answer A.

24.04-01 Field Between Plates 2004-3-24