Consider a typical capacitor, such as a parallel plate capacitor or a spherical capacitor. For each case, capacitance is defined by \(C \equiv \frac{Q}{V} \). In the presence of a dielectric with a dielectric constant \(\kappa > 1 \), while keeping \(Q \) fixed, the electric field between the gap will be reduced to \(E' = \frac{E}{\kappa} \).

Prior to the insertion of a dielectric we have the electric potential \(V \) and the capacitance \(C \) and after inserting a dielectric we have \(V' \) and \(C' \), respectively.

Choose the appropriate relationships.

A) \(V' = \kappa V \) and \(C' = \kappa C \)

B) \(V' = \kappa V \) and \(C' = \frac{\kappa}{C} \)

C) \(V' = \frac{V}{\kappa} \) and \(C' = \kappa C \)

D) \(V' = \frac{V}{\kappa} \) and \(C' = \frac{C}{\kappa} \)

E) \(V' = V \) and \(C' = C \)
Since \(V = E d \), we have

\[
V' = E' d = \frac{E d}{\kappa} = \frac{V}{\kappa},
\]

and since \(C \equiv \frac{Q}{V} \), we have

\[
C' = \frac{Q}{V'} = \frac{\kappa Q}{V} = \kappa C.
\]

Answer C.