The angle between the \vec{B} field and the plane of the loop is α.

Determine the direction of μ_{loop} and the angle between μ_{loop} and \vec{B}.

A) The direction of μ_{loop} is \downarrow and the angle between μ_{loop} and \vec{B} is $\frac{\pi}{2} - \alpha$.

B) The direction of μ_{loop} is \uparrow and the angle between μ_{loop} and \vec{B} is $\frac{\pi}{2} - \alpha$.

C) The direction of μ_{loop} is \downarrow and the angle between μ_{loop} and \vec{B} is $\frac{\pi}{2} + \alpha$.

D) The direction of μ_{loop} is \uparrow and the angle between μ_{loop} and \vec{B} is $\frac{\pi}{2} + \alpha$.
Right-hand-rule (RHR) #3 implies μ_{loop} is pointing downward and \vec{B} is in the xy-plane. In turn the angle β between μ_{loop} and \vec{B} is $\beta = \frac{\pi}{2} - \alpha$.

Answer A.

29.03-05 Current Loop in a Constant B 2004-3-24