A coil has \(N \) turns with radius \(r \) and current \(I \). \(\vec{B} \) is directed in the manner as shown. \(\vec{B} \) is uniformly distributed over the plan of the coil.

Find the direction of torque, \(\tau \).

A) The direction of \(\tau \) is \(\hat{i} \).
B) The direction of \(\tau \) is \(-\hat{i} \).
C) The direction of \(\tau \) is \(\hat{k} \).
D) The direction of \(\tau \) is \(-\hat{k} \).
Right-hand-rule (RHR) #3 implies $\vec{\mu}$ is pointing upward. $\vec{\mu} \times \vec{B}$ is pointing along $-\hat{k}$.

Answer D.

29.03-06 Torque on Current Loop 2004-3-24