Given: Consider a current segment \overline{CD} with current I. Let \vec{B} be the magnetic field vector at P due to this segment.

The direction and the magnitude of \vec{B} are

A) into the page, $B = \frac{\mu_0}{4 \pi a} \hat{k}$.

B) into the page, $B = \frac{\sqrt{2} \mu_0}{4 \pi a} \hat{k}$.

C) out of the page, $B = -\frac{\mu_0}{4 \pi a} \hat{k}$.

D) out of the page, $B = -\frac{\sqrt{2} \mu_0}{4 \pi a} \hat{k}$.

Consider $I\delta y$ at y where $\sin \theta = \frac{a}{r}$, $\frac{\delta y}{r^2} = \frac{\delta \theta}{a}$. Its contribution at P is

$$\delta B = \frac{\mu_0}{4\pi} \frac{I \delta y}{r^2} \sin \theta = \frac{\mu_0}{4\pi} \frac{I \delta \theta}{a} \sin \theta.$$

By inspection $I\delta \vec{y} \times r$ gives the direction of $\delta \vec{B}$ to be into the paper. So \vec{B} at P due to \vec{CD} is into the page. Integrating from C to D, one obtains at P

$$B = \int_{\pi/4}^{3\pi/4} \frac{\mu_0 I}{4\pi} \frac{d \theta}{a} \sin \theta = \frac{\sqrt{2}}{4\pi} \frac{\mu_0 I}{a}.$$

Answer B.

30.01-04 Magnetic Field due to a Straight Segment 2004-10-12