I is flowing along the positive y-axis in yz-plane at $x = 0$. The current direction is shown by arrows in the current sheet. At some instant after turning on I, the front of the \vec{B} field passes window $ABCD$ with speed v as shown in the figure.

Determine the direction of \vec{E} at A'.

A) The direction of \vec{E} is \uparrow.
B) The direction of \vec{E} is \rightarrow.
C) The direction of \vec{E} is \downarrow.
D) The direction of \vec{E} is \leftarrow.
Faraday’s law: $\mathcal{E} = \oint \vec{E} \cdot \vec{d}s = -\frac{d\phi}{dt}$; $\mathcal{E} = EL$ and $\phi = BLx$. Faraday’s law implies that the induced emf is out of the window, or the induced field \vec{E} is along AD, i.e. it is down.

Answer C.

30.03-06’Field’Due’To’Current’Sheet 2004-3-24