Given \(r = 1 \) m.
At \(t_1 = 0 \text{ sec}, B_1 = 1 \) T.
At \(t_2 = 2 \text{ sec}, B_2 = 2 \) T.

Find the induced emf \(E_{\text{ind}} \), in volts.

A) \(|E_{\text{ind}}| = \pi \) and its direction is clockwise.

B) \(|E_{\text{ind}}| = \frac{\pi}{2} \) and its direction is clockwise.

C) \(|E_{\text{ind}}| = \pi \) and its direction is counterclockwise.

D) \(|E_{\text{ind}}| = \frac{\pi}{2} \) and its direction is counterclockwise.
Based on the formula $\epsilon_{\text{ind}} = \left| \frac{d\phi}{dt} \right| = \left| \frac{B_2 A - B_1 A}{t_2 - t_1} \right|$, the magnitude of

induced emf $|\epsilon_{\text{ind}}| = \frac{(2 - 1) \pi}{2 - 0} = \frac{\pi}{2}$ volts.

Direction: B_{ind} opposes the increase of flux within the circular loop. So B_{ind} is out. RHR #3 implies that ϵ_{ind} is counterclockwise.

Answer D.

31.04-01 'Varying Flux and Induced Emf' 2004-3-24