Given: A network containing a battery \mathcal{E}, and capacitor C, and resistor R and an inductor L.

Denote the angular frequency of the “LC” circuit by $\omega = \frac{1}{\sqrt{LC}}$.

The switch S is left at position a for a long period of time. The switch S is then moved from position a to b at $t = 0$.

Find the plate charge on the capacitor C.

A) $Q = \mathcal{E} C \sin \omega t$
B) $Q = \mathcal{E} C \cos \omega t$
C) $Q = \frac{\mathcal{E}}{C} \sin \omega t$
D) $Q = \frac{\mathcal{E}}{C} \cos \omega t$
Since the charge is maximum at $t = 0$, $Q = V C$, and $V = \mathcal{E} C$, we have

$$Q = \mathcal{E} C \cos \omega t.$$

Answer B.

32.06-02 RLC Circuit 2004-3-24